| File: | regex/regcomp.c |
| Location: | line 1585, column 7 |
| Description: | Value stored to 'status' is never read |
| 1 | /* |
| 2 | regcomp.c - TRE POSIX compatible regex compilation functions. |
| 3 | |
| 4 | Copyright (c) 2001-2009 Ville Laurikari <vl@iki.fi> |
| 5 | All rights reserved. |
| 6 | |
| 7 | Redistribution and use in source and binary forms, with or without |
| 8 | modification, are permitted provided that the following conditions |
| 9 | are met: |
| 10 | |
| 11 | 1. Redistributions of source code must retain the above copyright |
| 12 | notice, this list of conditions and the following disclaimer. |
| 13 | |
| 14 | 2. Redistributions in binary form must reproduce the above copyright |
| 15 | notice, this list of conditions and the following disclaimer in the |
| 16 | documentation and/or other materials provided with the distribution. |
| 17 | |
| 18 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER AND CONTRIBUTORS |
| 19 | ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 20 | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 21 | A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 22 | HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 23 | SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 24 | LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 25 | DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 26 | THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 27 | (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 28 | OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 29 | |
| 30 | */ |
| 31 | |
| 32 | #include <string.h> |
| 33 | #include <stdlib.h> |
| 34 | #include <regex.h> |
| 35 | #include <limits.h> |
| 36 | #include <stdint.h> |
| 37 | #include <ctype.h> |
| 38 | |
| 39 | #include "tre.h" |
| 40 | |
| 41 | #include <assert.h> |
| 42 | |
| 43 | /*********************************************************************** |
| 44 | from tre-compile.h |
| 45 | ***********************************************************************/ |
| 46 | |
| 47 | typedef struct { |
| 48 | int position; |
| 49 | int code_min; |
| 50 | int code_max; |
| 51 | int *tags; |
| 52 | int assertions; |
| 53 | tre_ctype_t class; |
| 54 | tre_ctype_t *neg_classes; |
| 55 | int backref; |
| 56 | } tre_pos_and_tags_t; |
| 57 | |
| 58 | |
| 59 | /*********************************************************************** |
| 60 | from tre-ast.c and tre-ast.h |
| 61 | ***********************************************************************/ |
| 62 | |
| 63 | /* The different AST node types. */ |
| 64 | typedef enum { |
| 65 | LITERAL, |
| 66 | CATENATION, |
| 67 | ITERATION, |
| 68 | UNION |
| 69 | } tre_ast_type_t; |
| 70 | |
| 71 | /* Special subtypes of TRE_LITERAL. */ |
| 72 | #define EMPTY-1 -1 /* Empty leaf (denotes empty string). */ |
| 73 | #define ASSERTION-2 -2 /* Assertion leaf. */ |
| 74 | #define TAG-3 -3 /* Tag leaf. */ |
| 75 | #define BACKREF-4 -4 /* Back reference leaf. */ |
| 76 | |
| 77 | #define IS_SPECIAL(x)((x)->code_min < 0) ((x)->code_min < 0) |
| 78 | #define IS_EMPTY(x)((x)->code_min == -1) ((x)->code_min == EMPTY-1) |
| 79 | #define IS_ASSERTION(x)((x)->code_min == -2) ((x)->code_min == ASSERTION-2) |
| 80 | #define IS_TAG(x)((x)->code_min == -3) ((x)->code_min == TAG-3) |
| 81 | #define IS_BACKREF(x)((x)->code_min == -4) ((x)->code_min == BACKREF-4) |
| 82 | |
| 83 | |
| 84 | /* A generic AST node. All AST nodes consist of this node on the top |
| 85 | level with `obj' pointing to the actual content. */ |
| 86 | typedef struct { |
| 87 | tre_ast_type_t type; /* Type of the node. */ |
| 88 | void *obj; /* Pointer to actual node. */ |
| 89 | int nullable; |
| 90 | int submatch_id; |
| 91 | int num_submatches; |
| 92 | int num_tags; |
| 93 | tre_pos_and_tags_t *firstpos; |
| 94 | tre_pos_and_tags_t *lastpos; |
| 95 | } tre_ast_node_t; |
| 96 | |
| 97 | |
| 98 | /* A "literal" node. These are created for assertions, back references, |
| 99 | tags, matching parameter settings, and all expressions that match one |
| 100 | character. */ |
| 101 | typedef struct { |
| 102 | long code_min; |
| 103 | long code_max; |
| 104 | int position; |
| 105 | tre_ctype_t class; |
| 106 | tre_ctype_t *neg_classes; |
| 107 | } tre_literal_t; |
| 108 | |
| 109 | /* A "catenation" node. These are created when two regexps are concatenated. |
| 110 | If there are more than one subexpressions in sequence, the `left' part |
| 111 | holds all but the last, and `right' part holds the last subexpression |
| 112 | (catenation is left associative). */ |
| 113 | typedef struct { |
| 114 | tre_ast_node_t *left; |
| 115 | tre_ast_node_t *right; |
| 116 | } tre_catenation_t; |
| 117 | |
| 118 | /* An "iteration" node. These are created for the "*", "+", "?", and "{m,n}" |
| 119 | operators. */ |
| 120 | typedef struct { |
| 121 | /* Subexpression to match. */ |
| 122 | tre_ast_node_t *arg; |
| 123 | /* Minimum number of consecutive matches. */ |
| 124 | int min; |
| 125 | /* Maximum number of consecutive matches. */ |
| 126 | int max; |
| 127 | /* If 0, match as many characters as possible, if 1 match as few as |
| 128 | possible. Note that this does not always mean the same thing as |
| 129 | matching as many/few repetitions as possible. */ |
| 130 | unsigned int minimal:1; |
| 131 | } tre_iteration_t; |
| 132 | |
| 133 | /* An "union" node. These are created for the "|" operator. */ |
| 134 | typedef struct { |
| 135 | tre_ast_node_t *left; |
| 136 | tre_ast_node_t *right; |
| 137 | } tre_union_t; |
| 138 | |
| 139 | |
| 140 | static tre_ast_node_t * |
| 141 | tre_ast_new_node(tre_mem_t mem, int type, void *obj) |
| 142 | { |
| 143 | tre_ast_node_t *node = tre_mem_calloc(mem, sizeof *node)__tre_mem_alloc_impl(mem, 0, ((void*)0), 1, sizeof *node); |
| 144 | if (!node || !obj) |
| 145 | return 0; |
| 146 | node->obj = obj; |
| 147 | node->type = type; |
| 148 | node->nullable = -1; |
| 149 | node->submatch_id = -1; |
| 150 | return node; |
| 151 | } |
| 152 | |
| 153 | static tre_ast_node_t * |
| 154 | tre_ast_new_literal(tre_mem_t mem, int code_min, int code_max, int position) |
| 155 | { |
| 156 | tre_ast_node_t *node; |
| 157 | tre_literal_t *lit; |
| 158 | |
| 159 | lit = tre_mem_calloc(mem, sizeof *lit)__tre_mem_alloc_impl(mem, 0, ((void*)0), 1, sizeof *lit); |
| 160 | node = tre_ast_new_node(mem, LITERAL, lit); |
| 161 | if (!node) |
| 162 | return 0; |
| 163 | lit->code_min = code_min; |
| 164 | lit->code_max = code_max; |
| 165 | lit->position = position; |
| 166 | return node; |
| 167 | } |
| 168 | |
| 169 | static tre_ast_node_t * |
| 170 | tre_ast_new_iter(tre_mem_t mem, tre_ast_node_t *arg, int min, int max, int minimal) |
| 171 | { |
| 172 | tre_ast_node_t *node; |
| 173 | tre_iteration_t *iter; |
| 174 | |
| 175 | iter = tre_mem_calloc(mem, sizeof *iter)__tre_mem_alloc_impl(mem, 0, ((void*)0), 1, sizeof *iter); |
| 176 | node = tre_ast_new_node(mem, ITERATION, iter); |
| 177 | if (!node) |
| 178 | return 0; |
| 179 | iter->arg = arg; |
| 180 | iter->min = min; |
| 181 | iter->max = max; |
| 182 | iter->minimal = minimal; |
| 183 | node->num_submatches = arg->num_submatches; |
| 184 | return node; |
| 185 | } |
| 186 | |
| 187 | static tre_ast_node_t * |
| 188 | tre_ast_new_union(tre_mem_t mem, tre_ast_node_t *left, tre_ast_node_t *right) |
| 189 | { |
| 190 | tre_ast_node_t *node; |
| 191 | tre_union_t *un; |
| 192 | |
| 193 | if (!left) |
| 194 | return right; |
| 195 | un = tre_mem_calloc(mem, sizeof *un)__tre_mem_alloc_impl(mem, 0, ((void*)0), 1, sizeof *un); |
| 196 | node = tre_ast_new_node(mem, UNION, un); |
| 197 | if (!node || !right) |
| 198 | return 0; |
| 199 | un->left = left; |
| 200 | un->right = right; |
| 201 | node->num_submatches = left->num_submatches + right->num_submatches; |
| 202 | return node; |
| 203 | } |
| 204 | |
| 205 | static tre_ast_node_t * |
| 206 | tre_ast_new_catenation(tre_mem_t mem, tre_ast_node_t *left, tre_ast_node_t *right) |
| 207 | { |
| 208 | tre_ast_node_t *node; |
| 209 | tre_catenation_t *cat; |
| 210 | |
| 211 | if (!left) |
| 212 | return right; |
| 213 | cat = tre_mem_calloc(mem, sizeof *cat)__tre_mem_alloc_impl(mem, 0, ((void*)0), 1, sizeof *cat); |
| 214 | node = tre_ast_new_node(mem, CATENATION, cat); |
| 215 | if (!node) |
| 216 | return 0; |
| 217 | cat->left = left; |
| 218 | cat->right = right; |
| 219 | node->num_submatches = left->num_submatches + right->num_submatches; |
| 220 | return node; |
| 221 | } |
| 222 | |
| 223 | |
| 224 | /*********************************************************************** |
| 225 | from tre-stack.c and tre-stack.h |
| 226 | ***********************************************************************/ |
| 227 | |
| 228 | typedef struct tre_stack_rec tre_stack_t; |
| 229 | |
| 230 | /* Creates a new stack object. `size' is initial size in bytes, `max_size' |
| 231 | is maximum size, and `increment' specifies how much more space will be |
| 232 | allocated with realloc() if all space gets used up. Returns the stack |
| 233 | object or NULL if out of memory. */ |
| 234 | static tre_stack_t * |
| 235 | tre_stack_new(int size, int max_size, int increment); |
| 236 | |
| 237 | /* Frees the stack object. */ |
| 238 | static void |
| 239 | tre_stack_destroy(tre_stack_t *s); |
| 240 | |
| 241 | /* Returns the current number of objects in the stack. */ |
| 242 | static int |
| 243 | tre_stack_num_objects(tre_stack_t *s); |
| 244 | |
| 245 | /* Each tre_stack_push_*(tre_stack_t *s, <type> value) function pushes |
| 246 | `value' on top of stack `s'. Returns REG_ESPACE if out of memory. |
| 247 | This tries to realloc() more space before failing if maximum size |
| 248 | has not yet been reached. Returns REG_OK if successful. */ |
| 249 | #define declare_pushf(typetag, type)static reg_errcode_t tre_stack_push_typetag(tre_stack_t *s, type value) \ |
| 250 | static reg_errcode_t tre_stack_push_ ## typetag(tre_stack_t *s, type value) |
| 251 | |
| 252 | declare_pushf(voidptr, void *)static reg_errcode_t tre_stack_push_voidptr(tre_stack_t *s, void * value); |
| 253 | declare_pushf(int, int)static reg_errcode_t tre_stack_push_int(tre_stack_t *s, int value ); |
| 254 | |
| 255 | /* Each tre_stack_pop_*(tre_stack_t *s) function pops the topmost |
| 256 | element off of stack `s' and returns it. The stack must not be |
| 257 | empty. */ |
| 258 | #define declare_popf(typetag, type)static type tre_stack_pop_typetag(tre_stack_t *s) \ |
| 259 | static type tre_stack_pop_ ## typetag(tre_stack_t *s) |
| 260 | |
| 261 | declare_popf(voidptr, void *)static void * tre_stack_pop_voidptr(tre_stack_t *s); |
| 262 | declare_popf(int, int)static int tre_stack_pop_int(tre_stack_t *s); |
| 263 | |
| 264 | /* Just to save some typing. */ |
| 265 | #define STACK_PUSH(s, typetag, value)do { status = tre_stack_push_typetag(s, value); } while ( 0) \ |
| 266 | do \ |
| 267 | { \ |
| 268 | status = tre_stack_push_ ## typetag(s, value); \ |
| 269 | } \ |
| 270 | while (/*CONSTCOND*/0) |
| 271 | |
| 272 | #define STACK_PUSHX(s, typetag, value){ status = tre_stack_push_typetag(s, value); if (status != 0) break; } \ |
| 273 | { \ |
| 274 | status = tre_stack_push_ ## typetag(s, value); \ |
| 275 | if (status != REG_OK0) \ |
| 276 | break; \ |
| 277 | } |
| 278 | |
| 279 | #define STACK_PUSHR(s, typetag, value){ reg_errcode_t _status; _status = tre_stack_push_typetag(s, value ); if (_status != 0) return _status; } \ |
| 280 | { \ |
| 281 | reg_errcode_t _status; \ |
| 282 | _status = tre_stack_push_ ## typetag(s, value); \ |
| 283 | if (_status != REG_OK0) \ |
| 284 | return _status; \ |
| 285 | } |
| 286 | |
| 287 | union tre_stack_item { |
| 288 | void *voidptr_value; |
| 289 | int int_value; |
| 290 | }; |
| 291 | |
| 292 | struct tre_stack_rec { |
| 293 | int size; |
| 294 | int max_size; |
| 295 | int increment; |
| 296 | int ptr; |
| 297 | union tre_stack_item *stack; |
| 298 | }; |
| 299 | |
| 300 | |
| 301 | static tre_stack_t * |
| 302 | tre_stack_new(int size, int max_size, int increment) |
| 303 | { |
| 304 | tre_stack_t *s; |
| 305 | |
| 306 | s = xmallocmalloc(sizeof(*s)); |
| 307 | if (s != NULL((void*)0)) |
| 308 | { |
| 309 | s->stack = xmallocmalloc(sizeof(*s->stack) * size); |
| 310 | if (s->stack == NULL((void*)0)) |
| 311 | { |
| 312 | xfreefree(s); |
| 313 | return NULL((void*)0); |
| 314 | } |
| 315 | s->size = size; |
| 316 | s->max_size = max_size; |
| 317 | s->increment = increment; |
| 318 | s->ptr = 0; |
| 319 | } |
| 320 | return s; |
| 321 | } |
| 322 | |
| 323 | static void |
| 324 | tre_stack_destroy(tre_stack_t *s) |
| 325 | { |
| 326 | xfreefree(s->stack); |
| 327 | xfreefree(s); |
| 328 | } |
| 329 | |
| 330 | static int |
| 331 | tre_stack_num_objects(tre_stack_t *s) |
| 332 | { |
| 333 | return s->ptr; |
| 334 | } |
| 335 | |
| 336 | static reg_errcode_t |
| 337 | tre_stack_push(tre_stack_t *s, union tre_stack_item value) |
| 338 | { |
| 339 | if (s->ptr < s->size) |
| 340 | { |
| 341 | s->stack[s->ptr] = value; |
| 342 | s->ptr++; |
| 343 | } |
| 344 | else |
| 345 | { |
| 346 | if (s->size >= s->max_size) |
| 347 | { |
| 348 | return REG_ESPACE12; |
| 349 | } |
| 350 | else |
| 351 | { |
| 352 | union tre_stack_item *new_buffer; |
| 353 | int new_size; |
| 354 | new_size = s->size + s->increment; |
| 355 | if (new_size > s->max_size) |
| 356 | new_size = s->max_size; |
| 357 | new_buffer = xreallocrealloc(s->stack, sizeof(*new_buffer) * new_size); |
| 358 | if (new_buffer == NULL((void*)0)) |
| 359 | { |
| 360 | return REG_ESPACE12; |
| 361 | } |
| 362 | assert(new_size > s->size)(void)0; |
| 363 | s->size = new_size; |
| 364 | s->stack = new_buffer; |
| 365 | tre_stack_push(s, value); |
| 366 | } |
| 367 | } |
| 368 | return REG_OK0; |
| 369 | } |
| 370 | |
| 371 | #define define_pushf(typetag, type)static reg_errcode_t tre_stack_push_typetag(tre_stack_t *s, type value) { union tre_stack_item item; item.typetag_value = value ; return tre_stack_push(s, item); } \ |
| 372 | declare_pushf(typetag, type)static reg_errcode_t tre_stack_push_typetag(tre_stack_t *s, type value) { \ |
| 373 | union tre_stack_item item; \ |
| 374 | item.typetag ## _value = value; \ |
| 375 | return tre_stack_push(s, item); \ |
| 376 | } |
| 377 | |
| 378 | define_pushf(int, int)static reg_errcode_t tre_stack_push_int(tre_stack_t *s, int value ) { union tre_stack_item item; item.int_value = value; return tre_stack_push(s, item); } |
| 379 | define_pushf(voidptr, void *)static reg_errcode_t tre_stack_push_voidptr(tre_stack_t *s, void * value) { union tre_stack_item item; item.voidptr_value = value ; return tre_stack_push(s, item); } |
| 380 | |
| 381 | #define define_popf(typetag, type)static type tre_stack_pop_typetag(tre_stack_t *s) { return s-> stack[--s->ptr].typetag_value; } \ |
| 382 | declare_popf(typetag, type)static type tre_stack_pop_typetag(tre_stack_t *s) { \ |
| 383 | return s->stack[--s->ptr].typetag ## _value; \ |
| 384 | } |
| 385 | |
| 386 | define_popf(int, int)static int tre_stack_pop_int(tre_stack_t *s) { return s->stack [--s->ptr].int_value; } |
| 387 | define_popf(voidptr, void *)static void * tre_stack_pop_voidptr(tre_stack_t *s) { return s ->stack[--s->ptr].voidptr_value; } |
| 388 | |
| 389 | |
| 390 | /*********************************************************************** |
| 391 | from tre-parse.c and tre-parse.h |
| 392 | ***********************************************************************/ |
| 393 | |
| 394 | /* Parse context. */ |
| 395 | typedef struct { |
| 396 | /* Memory allocator. The AST is allocated using this. */ |
| 397 | tre_mem_t mem; |
| 398 | /* Stack used for keeping track of regexp syntax. */ |
| 399 | tre_stack_t *stack; |
| 400 | /* The parsed node after a parse function returns. */ |
| 401 | tre_ast_node_t *n; |
| 402 | /* Position in the regexp pattern after a parse function returns. */ |
| 403 | const char *s; |
| 404 | /* The first character of the regexp. */ |
| 405 | const char *re; |
| 406 | /* Current submatch ID. */ |
| 407 | int submatch_id; |
| 408 | /* Current position (number of literal). */ |
| 409 | int position; |
| 410 | /* The highest back reference or -1 if none seen so far. */ |
| 411 | int max_backref; |
| 412 | /* Compilation flags. */ |
| 413 | int cflags; |
| 414 | } tre_parse_ctx_t; |
| 415 | |
| 416 | /* Some macros for expanding \w, \s, etc. */ |
| 417 | static const struct { |
| 418 | char c; |
| 419 | const char *expansion; |
| 420 | } tre_macros[] = { |
| 421 | {'t', "\t"}, {'n', "\n"}, {'r', "\r"}, |
| 422 | {'f', "\f"}, {'a', "\a"}, {'e', "\033"}, |
| 423 | {'w', "[[:alnum:]_]"}, {'W', "[^[:alnum:]_]"}, {'s', "[[:space:]]"}, |
| 424 | {'S', "[^[:space:]]"}, {'d', "[[:digit:]]"}, {'D', "[^[:digit:]]"}, |
| 425 | { 0, 0 } |
| 426 | }; |
| 427 | |
| 428 | /* Expands a macro delimited by `regex' and `regex_end' to `buf', which |
| 429 | must have at least `len' items. Sets buf[0] to zero if the there |
| 430 | is no match in `tre_macros'. */ |
| 431 | static const char *tre_expand_macro(const char *s) |
| 432 | { |
| 433 | int i; |
| 434 | for (i = 0; tre_macros[i].c && tre_macros[i].c != *s; i++); |
| 435 | return tre_macros[i].expansion; |
| 436 | } |
| 437 | |
| 438 | static int |
| 439 | tre_compare_lit(const void *a, const void *b) |
| 440 | { |
| 441 | const tre_literal_t *const *la = a; |
| 442 | const tre_literal_t *const *lb = b; |
| 443 | /* assumes the range of valid code_min is < INT_MAX */ |
| 444 | return la[0]->code_min - lb[0]->code_min; |
| 445 | } |
| 446 | |
| 447 | struct literals { |
| 448 | tre_mem_t mem; |
| 449 | tre_literal_t **a; |
| 450 | int len; |
| 451 | int cap; |
| 452 | }; |
| 453 | |
| 454 | static tre_literal_t *tre_new_lit(struct literals *p) |
| 455 | { |
| 456 | tre_literal_t **a; |
| 457 | if (p->len >= p->cap) { |
| 458 | if (p->cap >= 1<<15) |
| 459 | return 0; |
| 460 | p->cap *= 2; |
| 461 | a = xreallocrealloc(p->a, p->cap * sizeof *p->a); |
| 462 | if (!a) |
| 463 | return 0; |
| 464 | p->a = a; |
| 465 | } |
| 466 | a = p->a + p->len++; |
| 467 | *a = tre_mem_calloc(p->mem, sizeof **a)__tre_mem_alloc_impl(p->mem, 0, ((void*)0), 1, sizeof **a); |
| 468 | return *a; |
| 469 | } |
| 470 | |
| 471 | static int add_icase_literals(struct literals *ls, int min, int max) |
| 472 | { |
| 473 | tre_literal_t *lit; |
| 474 | int b, e, c; |
| 475 | for (c=min; c<=max; ) { |
| 476 | /* assumes islower(c) and isupper(c) are exclusive |
| 477 | and toupper(c)!=c if islower(c). |
| 478 | multiple opposite case characters are not supported */ |
| 479 | if (tre_isloweriswlower(c)) { |
| 480 | b = e = tre_touppertowupper(c); |
| 481 | for (c++, e++; c<=max; c++, e++) |
| 482 | if (tre_touppertowupper(c) != e) break; |
| 483 | } else if (tre_isupperiswupper(c)) { |
| 484 | b = e = tre_tolowertowlower(c); |
| 485 | for (c++, e++; c<=max; c++, e++) |
| 486 | if (tre_tolowertowlower(c) != e) break; |
| 487 | } else { |
| 488 | c++; |
| 489 | continue; |
| 490 | } |
| 491 | lit = tre_new_lit(ls); |
| 492 | if (!lit) |
| 493 | return -1; |
| 494 | lit->code_min = b; |
| 495 | lit->code_max = e-1; |
| 496 | lit->position = -1; |
| 497 | } |
| 498 | return 0; |
| 499 | } |
| 500 | |
| 501 | |
| 502 | /* Maximum number of character classes in a negated bracket expression. */ |
| 503 | #define MAX_NEG_CLASSES64 64 |
| 504 | |
| 505 | struct neg { |
| 506 | int negate; |
| 507 | int len; |
| 508 | tre_ctype_t a[MAX_NEG_CLASSES64]; |
| 509 | }; |
| 510 | |
| 511 | // TODO: parse bracket into a set of non-overlapping [lo,hi] ranges |
| 512 | |
| 513 | /* |
| 514 | bracket grammar: |
| 515 | Bracket = '[' List ']' | '[^' List ']' |
| 516 | List = Term | List Term |
| 517 | Term = Char | Range | Chclass | Eqclass |
| 518 | Range = Char '-' Char | Char '-' '-' |
| 519 | Char = Coll | coll_single |
| 520 | Meta = ']' | '-' |
| 521 | Coll = '[.' coll_single '.]' | '[.' coll_multi '.]' | '[.' Meta '.]' |
| 522 | Eqclass = '[=' coll_single '=]' | '[=' coll_multi '=]' |
| 523 | Chclass = '[:' class ':]' |
| 524 | |
| 525 | coll_single is a single char collating element but it can be |
| 526 | '-' only at the beginning or end of a List and |
| 527 | ']' only at the beginning of a List and |
| 528 | '^' anywhere except after the openning '[' |
| 529 | */ |
| 530 | |
| 531 | static reg_errcode_t parse_bracket_terms(tre_parse_ctx_t *ctx, const char *s, struct literals *ls, struct neg *neg) |
| 532 | { |
| 533 | const char *start = s; |
| 534 | tre_ctype_t class; |
| 535 | int min, max; |
| 536 | wchar_t wc; |
| 537 | int len; |
| 538 | |
| 539 | for (;;) { |
| 540 | class = 0; |
| 541 | len = mbtowc(&wc, s, -1); |
| 542 | if (len <= 0) |
| 543 | return *s ? REG_BADPAT2 : REG_EBRACK7; |
| 544 | if (*s == ']' && s != start) { |
| 545 | ctx->s = s+1; |
| 546 | return REG_OK0; |
| 547 | } |
| 548 | if (*s == '-' && s != start && s[1] != ']' && |
| 549 | /* extension: [a-z--@] is accepted as [a-z]|[--@] */ |
| 550 | (s[1] != '-' || s[2] == ']')) |
| 551 | return REG_ERANGE11; |
| 552 | if (*s == '[' && (s[1] == '.' || s[1] == '=')) |
| 553 | /* collating symbols and equivalence classes are not supported */ |
| 554 | return REG_ECOLLATE3; |
| 555 | if (*s == '[' && s[1] == ':') { |
| 556 | char tmp[CHARCLASS_NAME_MAX14+1]; |
| 557 | s += 2; |
| 558 | for (len=0; len < CHARCLASS_NAME_MAX14 && s[len]; len++) { |
| 559 | if (s[len] == ':') { |
| 560 | memcpy(tmp, s, len); |
| 561 | tmp[len] = 0; |
| 562 | class = tre_ctypewctype(tmp); |
| 563 | break; |
| 564 | } |
| 565 | } |
| 566 | if (!class || s[len+1] != ']') |
| 567 | return REG_ECTYPE4; |
| 568 | min = 0; |
| 569 | max = TRE_CHAR_MAX0x10ffff; |
| 570 | s += len+2; |
| 571 | } else { |
| 572 | min = max = wc; |
| 573 | s += len; |
| 574 | if (*s == '-' && s[1] != ']') { |
| 575 | s++; |
| 576 | len = mbtowc(&wc, s, -1); |
| 577 | max = wc; |
| 578 | /* XXX - Should use collation order instead of |
| 579 | encoding values in character ranges. */ |
| 580 | if (len <= 0 || min > max) |
| 581 | return REG_ERANGE11; |
| 582 | s += len; |
| 583 | } |
| 584 | } |
| 585 | |
| 586 | if (class && neg->negate) { |
| 587 | if (neg->len >= MAX_NEG_CLASSES64) |
| 588 | return REG_ESPACE12; |
| 589 | neg->a[neg->len++] = class; |
| 590 | } else { |
| 591 | tre_literal_t *lit = tre_new_lit(ls); |
| 592 | if (!lit) |
| 593 | return REG_ESPACE12; |
| 594 | lit->code_min = min; |
| 595 | lit->code_max = max; |
| 596 | lit->class = class; |
| 597 | lit->position = -1; |
| 598 | |
| 599 | /* Add opposite-case codepoints if REG_ICASE is present. |
| 600 | It seems that POSIX requires that bracket negation |
| 601 | should happen before case-folding, but most practical |
| 602 | implementations do it the other way around. Changing |
| 603 | the order would need efficient representation of |
| 604 | case-fold ranges and bracket range sets even with |
| 605 | simple patterns so this is ok for now. */ |
| 606 | if (ctx->cflags & REG_ICASE2 && !class) |
| 607 | if (add_icase_literals(ls, min, max)) |
| 608 | return REG_ESPACE12; |
| 609 | } |
| 610 | } |
| 611 | } |
| 612 | |
| 613 | static reg_errcode_t parse_bracket(tre_parse_ctx_t *ctx, const char *s) |
| 614 | { |
| 615 | int i, max, min, negmax, negmin; |
| 616 | tre_ast_node_t *node = 0, *n; |
| 617 | tre_ctype_t *nc = 0; |
| 618 | tre_literal_t *lit; |
| 619 | struct literals ls; |
| 620 | struct neg neg; |
| 621 | reg_errcode_t err; |
| 622 | |
| 623 | ls.mem = ctx->mem; |
| 624 | ls.len = 0; |
| 625 | ls.cap = 32; |
| 626 | ls.a = xmallocmalloc(ls.cap * sizeof *ls.a); |
| 627 | if (!ls.a) |
| 628 | return REG_ESPACE12; |
| 629 | neg.len = 0; |
| 630 | neg.negate = *s == '^'; |
| 631 | if (neg.negate) |
| 632 | s++; |
| 633 | |
| 634 | err = parse_bracket_terms(ctx, s, &ls, &neg); |
| 635 | if (err != REG_OK0) |
| 636 | goto parse_bracket_done; |
| 637 | |
| 638 | if (neg.negate) { |
| 639 | /* Sort the array if we need to negate it. */ |
| 640 | qsort(ls.a, ls.len, sizeof *ls.a, tre_compare_lit); |
| 641 | /* extra lit for the last negated range */ |
| 642 | lit = tre_new_lit(&ls); |
| 643 | if (!lit) { |
| 644 | err = REG_ESPACE12; |
| 645 | goto parse_bracket_done; |
| 646 | } |
| 647 | lit->code_min = TRE_CHAR_MAX0x10ffff+1; |
| 648 | lit->code_max = TRE_CHAR_MAX0x10ffff+1; |
| 649 | lit->position = -1; |
| 650 | /* negated classes */ |
| 651 | if (neg.len) { |
| 652 | nc = tre_mem_alloc(ctx->mem, (neg.len+1)*sizeof *neg.a)__tre_mem_alloc_impl(ctx->mem, 0, ((void*)0), 0, (neg.len+ 1)*sizeof *neg.a); |
| 653 | if (!nc) { |
| 654 | err = REG_ESPACE12; |
| 655 | goto parse_bracket_done; |
| 656 | } |
| 657 | memcpy(nc, neg.a, neg.len*sizeof *neg.a); |
| 658 | nc[neg.len] = 0; |
| 659 | } |
| 660 | } |
| 661 | |
| 662 | /* Build a union of the items in the array, negated if necessary. */ |
| 663 | negmax = negmin = 0; |
| 664 | for (i = 0; i < ls.len; i++) { |
| 665 | lit = ls.a[i]; |
| 666 | min = lit->code_min; |
| 667 | max = lit->code_max; |
| 668 | if (neg.negate) { |
| 669 | if (min <= negmin) { |
| 670 | /* Overlap. */ |
| 671 | negmin = MAX(max + 1, negmin)(((max + 1) >= (negmin)) ? (max + 1) : (negmin)); |
| 672 | continue; |
| 673 | } |
| 674 | negmax = min - 1; |
| 675 | lit->code_min = negmin; |
| 676 | lit->code_max = negmax; |
| 677 | negmin = max + 1; |
| 678 | } |
| 679 | lit->position = ctx->position; |
| 680 | lit->neg_classes = nc; |
| 681 | n = tre_ast_new_node(ctx->mem, LITERAL, lit); |
| 682 | node = tre_ast_new_union(ctx->mem, node, n); |
| 683 | if (!node) { |
| 684 | err = REG_ESPACE12; |
| 685 | break; |
| 686 | } |
| 687 | } |
| 688 | |
| 689 | parse_bracket_done: |
| 690 | xfreefree(ls.a); |
| 691 | ctx->position++; |
| 692 | ctx->n = node; |
| 693 | return err; |
| 694 | } |
| 695 | |
| 696 | static const char *parse_dup_count(const char *s, int *n) |
| 697 | { |
| 698 | *n = -1; |
| 699 | if (!isdigit(*s)(0 ? isdigit(*s) : ((unsigned)(*s)-'0') < 10)) |
| 700 | return s; |
| 701 | *n = 0; |
| 702 | for (;;) { |
| 703 | *n = 10 * *n + (*s - '0'); |
| 704 | s++; |
| 705 | if (!isdigit(*s)(0 ? isdigit(*s) : ((unsigned)(*s)-'0') < 10) || *n > RE_DUP_MAX255) |
| 706 | break; |
| 707 | } |
| 708 | return s; |
| 709 | } |
| 710 | |
| 711 | static reg_errcode_t parse_dup(tre_parse_ctx_t *ctx, const char *s) |
| 712 | { |
| 713 | int min, max; |
| 714 | |
| 715 | s = parse_dup_count(s, &min); |
| 716 | if (*s == ',') |
| 717 | s = parse_dup_count(s+1, &max); |
| 718 | else |
| 719 | max = min; |
| 720 | |
| 721 | if ( |
| 722 | (max < min && max >= 0) || |
| 723 | max > RE_DUP_MAX255 || |
| 724 | min > RE_DUP_MAX255 || |
| 725 | min < 0 || |
| 726 | (!(ctx->cflags & REG_EXTENDED1) && *s++ != '\\') || |
| 727 | *s++ != '}' |
| 728 | ) |
| 729 | return REG_BADBR10; |
| 730 | |
| 731 | if (min == 0 && max == 0) |
| 732 | ctx->n = tre_ast_new_literal(ctx->mem, EMPTY-1, -1, -1); |
| 733 | else |
| 734 | ctx->n = tre_ast_new_iter(ctx->mem, ctx->n, min, max, 0); |
| 735 | if (!ctx->n) |
| 736 | return REG_ESPACE12; |
| 737 | ctx->s = s; |
| 738 | return REG_OK0; |
| 739 | } |
| 740 | |
| 741 | static int hexval(unsigned c) |
| 742 | { |
| 743 | if (c-'0'<10) return c-'0'; |
| 744 | c |= 32; |
| 745 | if (c-'a'<6) return c-'a'+10; |
| 746 | return -1; |
| 747 | } |
| 748 | |
| 749 | static reg_errcode_t marksub(tre_parse_ctx_t *ctx, tre_ast_node_t *node, int subid) |
| 750 | { |
| 751 | if (node->submatch_id >= 0) { |
| 752 | tre_ast_node_t *n = tre_ast_new_literal(ctx->mem, EMPTY-1, -1, -1); |
| 753 | if (!n) |
| 754 | return REG_ESPACE12; |
| 755 | n = tre_ast_new_catenation(ctx->mem, n, node); |
| 756 | if (!n) |
| 757 | return REG_ESPACE12; |
| 758 | n->num_submatches = node->num_submatches; |
| 759 | node = n; |
| 760 | } |
| 761 | node->submatch_id = subid; |
| 762 | node->num_submatches++; |
| 763 | ctx->n = node; |
| 764 | return REG_OK0; |
| 765 | } |
| 766 | |
| 767 | /* |
| 768 | BRE grammar: |
| 769 | Regex = Branch | '^' | '$' | '^$' | '^' Branch | Branch '$' | '^' Branch '$' |
| 770 | Branch = Atom | Branch Atom |
| 771 | Atom = char | quoted_char | '.' | Bracket | Atom Dup | '\(' Branch '\)' | back_ref |
| 772 | Dup = '*' | '\{' Count '\}' | '\{' Count ',\}' | '\{' Count ',' Count '\}' |
| 773 | |
| 774 | (leading ^ and trailing $ in a sub expr may be an anchor or literal as well) |
| 775 | |
| 776 | ERE grammar: |
| 777 | Regex = Branch | Regex '|' Branch |
| 778 | Branch = Atom | Branch Atom |
| 779 | Atom = char | quoted_char | '.' | Bracket | Atom Dup | '(' Regex ')' | '^' | '$' |
| 780 | Dup = '*' | '+' | '?' | '{' Count '}' | '{' Count ',}' | '{' Count ',' Count '}' |
| 781 | |
| 782 | (a*+?, ^*, $+, \X, {, (|a) are unspecified) |
| 783 | */ |
| 784 | |
| 785 | static reg_errcode_t parse_atom(tre_parse_ctx_t *ctx, const char *s) |
| 786 | { |
| 787 | int len, ere = ctx->cflags & REG_EXTENDED1; |
| 788 | const char *p; |
| 789 | tre_ast_node_t *node; |
| 790 | wchar_t wc; |
| 791 | switch (*s) { |
| 792 | case '[': |
| 793 | return parse_bracket(ctx, s+1); |
| 794 | case '\\': |
| 795 | p = tre_expand_macro(s+1); |
| 796 | if (p) { |
| 797 | /* assume \X expansion is a single atom */ |
| 798 | reg_errcode_t err = parse_atom(ctx, p); |
| 799 | ctx->s = s+2; |
| 800 | return err; |
| 801 | } |
| 802 | /* extensions: \b, \B, \<, \>, \xHH \x{HHHH} */ |
| 803 | switch (*++s) { |
| 804 | case 0: |
| 805 | return REG_EESCAPE5; |
| 806 | case 'b': |
| 807 | node = tre_ast_new_literal(ctx->mem, ASSERTION-2, ASSERT_AT_WB64, -1); |
| 808 | break; |
| 809 | case 'B': |
| 810 | node = tre_ast_new_literal(ctx->mem, ASSERTION-2, ASSERT_AT_WB_NEG128, -1); |
| 811 | break; |
| 812 | case '<': |
| 813 | node = tre_ast_new_literal(ctx->mem, ASSERTION-2, ASSERT_AT_BOW16, -1); |
| 814 | break; |
| 815 | case '>': |
| 816 | node = tre_ast_new_literal(ctx->mem, ASSERTION-2, ASSERT_AT_EOW32, -1); |
| 817 | break; |
| 818 | case 'x': |
| 819 | s++; |
| 820 | int i, v = 0, c; |
| 821 | len = 2; |
| 822 | if (*s == '{') { |
| 823 | len = 8; |
| 824 | s++; |
| 825 | } |
| 826 | for (i=0; i<len && v<0x110000; i++) { |
| 827 | c = hexval(s[i]); |
| 828 | if (c < 0) break; |
| 829 | v = 16*v + c; |
| 830 | } |
| 831 | s += i; |
| 832 | if (len == 8) { |
| 833 | if (*s != '}') |
| 834 | return REG_EBRACE9; |
| 835 | s++; |
| 836 | } |
| 837 | node = tre_ast_new_literal(ctx->mem, v, v, ctx->position); |
| 838 | ctx->position++; |
| 839 | s--; |
| 840 | break; |
| 841 | default: |
| 842 | if (!ere && (unsigned)*s-'1' < 9) { |
| 843 | /* back reference */ |
| 844 | int val = *s - '0'; |
| 845 | node = tre_ast_new_literal(ctx->mem, BACKREF-4, val, ctx->position); |
| 846 | ctx->max_backref = MAX(val, ctx->max_backref)(((val) >= (ctx->max_backref)) ? (val) : (ctx->max_backref )); |
| 847 | } else { |
| 848 | /* extension: accept unknown escaped char |
| 849 | as a literal */ |
| 850 | goto parse_literal; |
| 851 | } |
| 852 | ctx->position++; |
| 853 | } |
| 854 | s++; |
| 855 | break; |
| 856 | case '.': |
| 857 | if (ctx->cflags & REG_NEWLINE4) { |
| 858 | tre_ast_node_t *tmp1, *tmp2; |
| 859 | tmp1 = tre_ast_new_literal(ctx->mem, 0, '\n'-1, ctx->position++); |
| 860 | tmp2 = tre_ast_new_literal(ctx->mem, '\n'+1, TRE_CHAR_MAX0x10ffff, ctx->position++); |
| 861 | if (tmp1 && tmp2) |
| 862 | node = tre_ast_new_union(ctx->mem, tmp1, tmp2); |
| 863 | else |
| 864 | node = 0; |
| 865 | } else { |
| 866 | node = tre_ast_new_literal(ctx->mem, 0, TRE_CHAR_MAX0x10ffff, ctx->position++); |
| 867 | } |
| 868 | s++; |
| 869 | break; |
| 870 | case '^': |
| 871 | /* '^' has a special meaning everywhere in EREs, and at beginning of BRE. */ |
| 872 | if (!ere && s != ctx->re) |
| 873 | goto parse_literal; |
| 874 | node = tre_ast_new_literal(ctx->mem, ASSERTION-2, ASSERT_AT_BOL1, -1); |
| 875 | s++; |
| 876 | break; |
| 877 | case '$': |
| 878 | /* '$' is special everywhere in EREs, and in the end of the string in BREs. */ |
| 879 | if (!ere && s[1]) |
| 880 | goto parse_literal; |
| 881 | node = tre_ast_new_literal(ctx->mem, ASSERTION-2, ASSERT_AT_EOL2, -1); |
| 882 | s++; |
| 883 | break; |
| 884 | case '*': |
| 885 | case '|': |
| 886 | case '{': |
| 887 | case '+': |
| 888 | case '?': |
| 889 | if (!ere) |
| 890 | goto parse_literal; |
| 891 | case 0: |
| 892 | node = tre_ast_new_literal(ctx->mem, EMPTY-1, -1, -1); |
| 893 | break; |
| 894 | default: |
| 895 | parse_literal: |
| 896 | len = mbtowc(&wc, s, -1); |
| 897 | if (len < 0) |
| 898 | return REG_BADPAT2; |
| 899 | if (ctx->cflags & REG_ICASE2 && (tre_isupperiswupper(wc) || tre_isloweriswlower(wc))) { |
| 900 | tre_ast_node_t *tmp1, *tmp2; |
| 901 | /* multiple opposite case characters are not supported */ |
| 902 | tmp1 = tre_ast_new_literal(ctx->mem, tre_touppertowupper(wc), tre_touppertowupper(wc), ctx->position); |
| 903 | tmp2 = tre_ast_new_literal(ctx->mem, tre_tolowertowlower(wc), tre_tolowertowlower(wc), ctx->position); |
| 904 | if (tmp1 && tmp2) |
| 905 | node = tre_ast_new_union(ctx->mem, tmp1, tmp2); |
| 906 | else |
| 907 | node = 0; |
| 908 | } else { |
| 909 | node = tre_ast_new_literal(ctx->mem, wc, wc, ctx->position); |
| 910 | } |
| 911 | ctx->position++; |
| 912 | s += len; |
| 913 | break; |
| 914 | } |
| 915 | if (!node) |
| 916 | return REG_ESPACE12; |
| 917 | ctx->n = node; |
| 918 | ctx->s = s; |
| 919 | return REG_OK0; |
| 920 | } |
| 921 | |
| 922 | #define PUSHPTR(err, s, v)do { if ((err = tre_stack_push_voidptr(s, v)) != 0) return err ; } while(0) do { \ |
| 923 | if ((err = tre_stack_push_voidptr(s, v)) != REG_OK0) \ |
| 924 | return err; \ |
| 925 | } while(0) |
| 926 | |
| 927 | #define PUSHINT(err, s, v)do { if ((err = tre_stack_push_int(s, v)) != 0) return err; } while(0) do { \ |
| 928 | if ((err = tre_stack_push_int(s, v)) != REG_OK0) \ |
| 929 | return err; \ |
| 930 | } while(0) |
| 931 | |
| 932 | static reg_errcode_t tre_parse(tre_parse_ctx_t *ctx) |
| 933 | { |
| 934 | tre_ast_node_t *nbranch=0, *nunion=0; |
| 935 | int ere = ctx->cflags & REG_EXTENDED1; |
| 936 | const char *s = ctx->re; |
| 937 | int subid = 0; |
| 938 | int depth = 0; |
| 939 | reg_errcode_t err; |
| 940 | tre_stack_t *stack = ctx->stack; |
| 941 | |
| 942 | PUSHINT(err, stack, subid++)do { if ((err = tre_stack_push_int(stack, subid++)) != 0) return err; } while(0); |
| 943 | for (;;) { |
| 944 | if ((!ere && *s == '\\' && s[1] == '(') || |
| 945 | (ere && *s == '(')) { |
| 946 | PUSHPTR(err, stack, nunion)do { if ((err = tre_stack_push_voidptr(stack, nunion)) != 0) return err; } while(0); |
| 947 | PUSHPTR(err, stack, nbranch)do { if ((err = tre_stack_push_voidptr(stack, nbranch)) != 0) return err; } while(0); |
| 948 | PUSHINT(err, stack, subid++)do { if ((err = tre_stack_push_int(stack, subid++)) != 0) return err; } while(0); |
| 949 | s++; |
| 950 | if (!ere) |
| 951 | s++; |
| 952 | depth++; |
| 953 | nbranch = nunion = 0; |
| 954 | continue; |
| 955 | } |
| 956 | if ((!ere && *s == '\\' && s[1] == ')') || |
| 957 | (ere && *s == ')' && depth)) { |
| 958 | ctx->n = tre_ast_new_literal(ctx->mem, EMPTY-1, -1, -1); |
| 959 | if (!ctx->n) |
| 960 | return REG_ESPACE12; |
| 961 | } else { |
| 962 | err = parse_atom(ctx, s); |
| 963 | if (err != REG_OK0) |
| 964 | return err; |
| 965 | s = ctx->s; |
| 966 | } |
| 967 | |
| 968 | parse_iter: |
| 969 | /* extension: repetitions are accepted after an empty node |
| 970 | eg. (+), ^*, a$?, a|{2} */ |
| 971 | switch (*s) { |
| 972 | case '+': |
| 973 | case '?': |
| 974 | if (!ere) |
| 975 | break; |
| 976 | /* fallthrough */ |
| 977 | case '*':; |
| 978 | int min=0, max=-1; |
| 979 | if (*s == '+') |
| 980 | min = 1; |
| 981 | if (*s == '?') |
| 982 | max = 1; |
| 983 | s++; |
| 984 | ctx->n = tre_ast_new_iter(ctx->mem, ctx->n, min, max, 0); |
| 985 | if (!ctx->n) |
| 986 | return REG_ESPACE12; |
| 987 | /* extension: multiple consecutive *+?{,} is unspecified, |
| 988 | but (a+)+ has to be supported so accepting a++ makes |
| 989 | sense, note however that the RE_DUP_MAX limit can be |
| 990 | circumvented: (a{255}){255} uses a lot of memory.. */ |
| 991 | goto parse_iter; |
| 992 | case '\\': |
| 993 | if (ere || s[1] != '{') |
| 994 | break; |
| 995 | s++; |
| 996 | goto parse_brace; |
| 997 | case '{': |
| 998 | if (!ere) |
| 999 | break; |
| 1000 | parse_brace: |
| 1001 | err = parse_dup(ctx, s+1); |
| 1002 | if (err != REG_OK0) |
| 1003 | return err; |
| 1004 | s = ctx->s; |
| 1005 | goto parse_iter; |
| 1006 | } |
| 1007 | |
| 1008 | nbranch = tre_ast_new_catenation(ctx->mem, nbranch, ctx->n); |
| 1009 | if ((ere && *s == '|') || |
| 1010 | (ere && *s == ')' && depth) || |
| 1011 | (!ere && *s == '\\' && s[1] == ')') || |
| 1012 | !*s) { |
| 1013 | /* extension: empty branch is unspecified (), (|a), (a|) |
| 1014 | here they are not rejected but match on empty string */ |
| 1015 | int c = *s; |
| 1016 | nunion = tre_ast_new_union(ctx->mem, nunion, nbranch); |
| 1017 | nbranch = 0; |
| 1018 | if (c != '|') { |
| 1019 | if (c == '\\') { |
| 1020 | if (!depth) return REG_EPAREN8; |
| 1021 | s+=2; |
| 1022 | } else if (c == ')') |
| 1023 | s++; |
| 1024 | depth--; |
| 1025 | err = marksub(ctx, nunion, tre_stack_pop_int(stack)); |
| 1026 | if (err != REG_OK0) |
| 1027 | return err; |
| 1028 | if (!c && depth<0) { |
| 1029 | ctx->submatch_id = subid; |
| 1030 | return REG_OK0; |
| 1031 | } |
| 1032 | if (!c || depth<0) |
| 1033 | return REG_EPAREN8; |
| 1034 | nbranch = tre_stack_pop_voidptr(stack); |
| 1035 | nunion = tre_stack_pop_voidptr(stack); |
| 1036 | goto parse_iter; |
| 1037 | } |
| 1038 | s++; |
| 1039 | } |
| 1040 | } |
| 1041 | } |
| 1042 | |
| 1043 | |
| 1044 | /*********************************************************************** |
| 1045 | from tre-compile.c |
| 1046 | ***********************************************************************/ |
| 1047 | |
| 1048 | |
| 1049 | /* |
| 1050 | TODO: |
| 1051 | - Fix tre_ast_to_tnfa() to recurse using a stack instead of recursive |
| 1052 | function calls. |
| 1053 | */ |
| 1054 | |
| 1055 | /* |
| 1056 | Algorithms to setup tags so that submatch addressing can be done. |
| 1057 | */ |
| 1058 | |
| 1059 | |
| 1060 | /* Inserts a catenation node to the root of the tree given in `node'. |
| 1061 | As the left child a new tag with number `tag_id' to `node' is added, |
| 1062 | and the right child is the old root. */ |
| 1063 | static reg_errcode_t |
| 1064 | tre_add_tag_left(tre_mem_t mem, tre_ast_node_t *node, int tag_id) |
| 1065 | { |
| 1066 | tre_catenation_t *c; |
| 1067 | |
| 1068 | c = tre_mem_alloc(mem, sizeof(*c))__tre_mem_alloc_impl(mem, 0, ((void*)0), 0, sizeof(*c)); |
| 1069 | if (c == NULL((void*)0)) |
| 1070 | return REG_ESPACE12; |
| 1071 | c->left = tre_ast_new_literal(mem, TAG-3, tag_id, -1); |
| 1072 | if (c->left == NULL((void*)0)) |
| 1073 | return REG_ESPACE12; |
| 1074 | c->right = tre_mem_alloc(mem, sizeof(tre_ast_node_t))__tre_mem_alloc_impl(mem, 0, ((void*)0), 0, sizeof(tre_ast_node_t )); |
| 1075 | if (c->right == NULL((void*)0)) |
| 1076 | return REG_ESPACE12; |
| 1077 | |
| 1078 | c->right->obj = node->obj; |
| 1079 | c->right->type = node->type; |
| 1080 | c->right->nullable = -1; |
| 1081 | c->right->submatch_id = -1; |
| 1082 | c->right->firstpos = NULL((void*)0); |
| 1083 | c->right->lastpos = NULL((void*)0); |
| 1084 | c->right->num_tags = 0; |
| 1085 | node->obj = c; |
| 1086 | node->type = CATENATION; |
| 1087 | return REG_OK0; |
| 1088 | } |
| 1089 | |
| 1090 | /* Inserts a catenation node to the root of the tree given in `node'. |
| 1091 | As the right child a new tag with number `tag_id' to `node' is added, |
| 1092 | and the left child is the old root. */ |
| 1093 | static reg_errcode_t |
| 1094 | tre_add_tag_right(tre_mem_t mem, tre_ast_node_t *node, int tag_id) |
| 1095 | { |
| 1096 | tre_catenation_t *c; |
| 1097 | |
| 1098 | c = tre_mem_alloc(mem, sizeof(*c))__tre_mem_alloc_impl(mem, 0, ((void*)0), 0, sizeof(*c)); |
| 1099 | if (c == NULL((void*)0)) |
| 1100 | return REG_ESPACE12; |
| 1101 | c->right = tre_ast_new_literal(mem, TAG-3, tag_id, -1); |
| 1102 | if (c->right == NULL((void*)0)) |
| 1103 | return REG_ESPACE12; |
| 1104 | c->left = tre_mem_alloc(mem, sizeof(tre_ast_node_t))__tre_mem_alloc_impl(mem, 0, ((void*)0), 0, sizeof(tre_ast_node_t )); |
| 1105 | if (c->left == NULL((void*)0)) |
| 1106 | return REG_ESPACE12; |
| 1107 | |
| 1108 | c->left->obj = node->obj; |
| 1109 | c->left->type = node->type; |
| 1110 | c->left->nullable = -1; |
| 1111 | c->left->submatch_id = -1; |
| 1112 | c->left->firstpos = NULL((void*)0); |
| 1113 | c->left->lastpos = NULL((void*)0); |
| 1114 | c->left->num_tags = 0; |
| 1115 | node->obj = c; |
| 1116 | node->type = CATENATION; |
| 1117 | return REG_OK0; |
| 1118 | } |
| 1119 | |
| 1120 | typedef enum { |
| 1121 | ADDTAGS_RECURSE, |
| 1122 | ADDTAGS_AFTER_ITERATION, |
| 1123 | ADDTAGS_AFTER_UNION_LEFT, |
| 1124 | ADDTAGS_AFTER_UNION_RIGHT, |
| 1125 | ADDTAGS_AFTER_CAT_LEFT, |
| 1126 | ADDTAGS_AFTER_CAT_RIGHT, |
| 1127 | ADDTAGS_SET_SUBMATCH_END |
| 1128 | } tre_addtags_symbol_t; |
| 1129 | |
| 1130 | |
| 1131 | typedef struct { |
| 1132 | int tag; |
| 1133 | int next_tag; |
| 1134 | } tre_tag_states_t; |
| 1135 | |
| 1136 | |
| 1137 | /* Go through `regset' and set submatch data for submatches that are |
| 1138 | using this tag. */ |
| 1139 | static void |
| 1140 | tre_purge_regset(int *regset, tre_tnfa_t *tnfa, int tag) |
| 1141 | { |
| 1142 | int i; |
| 1143 | |
| 1144 | for (i = 0; regset[i] >= 0; i++) |
| 1145 | { |
| 1146 | int id = regset[i] / 2; |
| 1147 | int start = !(regset[i] % 2); |
| 1148 | if (start) |
| 1149 | tnfa->submatch_data[id].so_tag = tag; |
| 1150 | else |
| 1151 | tnfa->submatch_data[id].eo_tag = tag; |
| 1152 | } |
| 1153 | regset[0] = -1; |
| 1154 | } |
| 1155 | |
| 1156 | |
| 1157 | /* Adds tags to appropriate locations in the parse tree in `tree', so that |
| 1158 | subexpressions marked for submatch addressing can be traced. */ |
| 1159 | static reg_errcode_t |
| 1160 | tre_add_tags(tre_mem_t mem, tre_stack_t *stack, tre_ast_node_t *tree, |
| 1161 | tre_tnfa_t *tnfa) |
| 1162 | { |
| 1163 | reg_errcode_t status = REG_OK0; |
| 1164 | tre_addtags_symbol_t symbol; |
| 1165 | tre_ast_node_t *node = tree; /* Tree node we are currently looking at. */ |
| 1166 | int bottom = tre_stack_num_objects(stack); |
| 1167 | /* True for first pass (counting number of needed tags) */ |
| 1168 | int first_pass = (mem == NULL((void*)0) || tnfa == NULL((void*)0)); |
| 1169 | int *regset, *orig_regset; |
| 1170 | int num_tags = 0; /* Total number of tags. */ |
| 1171 | int num_minimals = 0; /* Number of special minimal tags. */ |
| 1172 | int tag = 0; /* The tag that is to be added next. */ |
| 1173 | int next_tag = 1; /* Next tag to use after this one. */ |
| 1174 | int *parents; /* Stack of submatches the current submatch is |
| 1175 | contained in. */ |
| 1176 | int minimal_tag = -1; /* Tag that marks the beginning of a minimal match. */ |
| 1177 | tre_tag_states_t *saved_states; |
| 1178 | |
| 1179 | tre_tag_direction_t direction = TRE_TAG_MINIMIZE; |
| 1180 | if (!first_pass) |
| 1181 | { |
| 1182 | tnfa->end_tag = 0; |
| 1183 | tnfa->minimal_tags[0] = -1; |
| 1184 | } |
| 1185 | |
| 1186 | regset = xmallocmalloc(sizeof(*regset) * ((tnfa->num_submatches + 1) * 2)); |
| 1187 | if (regset == NULL((void*)0)) |
| 1188 | return REG_ESPACE12; |
| 1189 | regset[0] = -1; |
| 1190 | orig_regset = regset; |
| 1191 | |
| 1192 | parents = xmallocmalloc(sizeof(*parents) * (tnfa->num_submatches + 1)); |
| 1193 | if (parents == NULL((void*)0)) |
| 1194 | { |
| 1195 | xfreefree(regset); |
| 1196 | return REG_ESPACE12; |
| 1197 | } |
| 1198 | parents[0] = -1; |
| 1199 | |
| 1200 | saved_states = xmallocmalloc(sizeof(*saved_states) * (tnfa->num_submatches + 1)); |
| 1201 | if (saved_states == NULL((void*)0)) |
| 1202 | { |
| 1203 | xfreefree(regset); |
| 1204 | xfreefree(parents); |
| 1205 | return REG_ESPACE12; |
| 1206 | } |
| 1207 | else |
| 1208 | { |
| 1209 | unsigned int i; |
| 1210 | for (i = 0; i <= tnfa->num_submatches; i++) |
| 1211 | saved_states[i].tag = -1; |
| 1212 | } |
| 1213 | |
| 1214 | STACK_PUSH(stack, voidptr, node)do { status = tre_stack_push_voidptr(stack, node); } while ( 0 ); |
| 1215 | STACK_PUSH(stack, int, ADDTAGS_RECURSE)do { status = tre_stack_push_int(stack, ADDTAGS_RECURSE); } while ( 0); |
| 1216 | |
| 1217 | while (tre_stack_num_objects(stack) > bottom) |
| 1218 | { |
| 1219 | if (status != REG_OK0) |
| 1220 | break; |
| 1221 | |
| 1222 | symbol = (tre_addtags_symbol_t)tre_stack_pop_int(stack); |
| 1223 | switch (symbol) |
| 1224 | { |
| 1225 | |
| 1226 | case ADDTAGS_SET_SUBMATCH_END: |
| 1227 | { |
| 1228 | int id = tre_stack_pop_int(stack); |
| 1229 | int i; |
| 1230 | |
| 1231 | /* Add end of this submatch to regset. */ |
| 1232 | for (i = 0; regset[i] >= 0; i++); |
| 1233 | regset[i] = id * 2 + 1; |
| 1234 | regset[i + 1] = -1; |
| 1235 | |
| 1236 | /* Pop this submatch from the parents stack. */ |
| 1237 | for (i = 0; parents[i] >= 0; i++); |
| 1238 | parents[i - 1] = -1; |
| 1239 | break; |
| 1240 | } |
| 1241 | |
| 1242 | case ADDTAGS_RECURSE: |
| 1243 | node = tre_stack_pop_voidptr(stack); |
| 1244 | |
| 1245 | if (node->submatch_id >= 0) |
| 1246 | { |
| 1247 | int id = node->submatch_id; |
| 1248 | int i; |
| 1249 | |
| 1250 | |
| 1251 | /* Add start of this submatch to regset. */ |
| 1252 | for (i = 0; regset[i] >= 0; i++); |
| 1253 | regset[i] = id * 2; |
| 1254 | regset[i + 1] = -1; |
| 1255 | |
| 1256 | if (!first_pass) |
| 1257 | { |
| 1258 | for (i = 0; parents[i] >= 0; i++); |
| 1259 | tnfa->submatch_data[id].parents = NULL((void*)0); |
| 1260 | if (i > 0) |
| 1261 | { |
| 1262 | int *p = xmallocmalloc(sizeof(*p) * (i + 1)); |
| 1263 | if (p == NULL((void*)0)) |
| 1264 | { |
| 1265 | status = REG_ESPACE12; |
| 1266 | break; |
| 1267 | } |
| 1268 | assert(tnfa->submatch_data[id].parents == NULL)(void)0; |
| 1269 | tnfa->submatch_data[id].parents = p; |
| 1270 | for (i = 0; parents[i] >= 0; i++) |
| 1271 | p[i] = parents[i]; |
| 1272 | p[i] = -1; |
| 1273 | } |
| 1274 | } |
| 1275 | |
| 1276 | /* Add end of this submatch to regset after processing this |
| 1277 | node. */ |
| 1278 | STACK_PUSHX(stack, int, node->submatch_id){ status = tre_stack_push_int(stack, node->submatch_id); if (status != 0) break; }; |
| 1279 | STACK_PUSHX(stack, int, ADDTAGS_SET_SUBMATCH_END){ status = tre_stack_push_int(stack, ADDTAGS_SET_SUBMATCH_END ); if (status != 0) break; }; |
| 1280 | } |
| 1281 | |
| 1282 | switch (node->type) |
| 1283 | { |
| 1284 | case LITERAL: |
| 1285 | { |
| 1286 | tre_literal_t *lit = node->obj; |
| 1287 | |
| 1288 | if (!IS_SPECIAL(lit)((lit)->code_min < 0) || IS_BACKREF(lit)((lit)->code_min == -4)) |
| 1289 | { |
| 1290 | int i; |
| 1291 | if (regset[0] >= 0) |
| 1292 | { |
| 1293 | /* Regset is not empty, so add a tag before the |
| 1294 | literal or backref. */ |
| 1295 | if (!first_pass) |
| 1296 | { |
| 1297 | status = tre_add_tag_left(mem, node, tag); |
| 1298 | tnfa->tag_directions[tag] = direction; |
| 1299 | if (minimal_tag >= 0) |
| 1300 | { |
| 1301 | for (i = 0; tnfa->minimal_tags[i] >= 0; i++); |
| 1302 | tnfa->minimal_tags[i] = tag; |
| 1303 | tnfa->minimal_tags[i + 1] = minimal_tag; |
| 1304 | tnfa->minimal_tags[i + 2] = -1; |
| 1305 | minimal_tag = -1; |
| 1306 | num_minimals++; |
| 1307 | } |
| 1308 | tre_purge_regset(regset, tnfa, tag); |
| 1309 | } |
| 1310 | else |
| 1311 | { |
| 1312 | node->num_tags = 1; |
| 1313 | } |
| 1314 | |
| 1315 | regset[0] = -1; |
| 1316 | tag = next_tag; |
| 1317 | num_tags++; |
| 1318 | next_tag++; |
| 1319 | } |
| 1320 | } |
| 1321 | else |
| 1322 | { |
| 1323 | assert(!IS_TAG(lit))(void)0; |
| 1324 | } |
| 1325 | break; |
| 1326 | } |
| 1327 | case CATENATION: |
| 1328 | { |
| 1329 | tre_catenation_t *cat = node->obj; |
| 1330 | tre_ast_node_t *left = cat->left; |
| 1331 | tre_ast_node_t *right = cat->right; |
| 1332 | int reserved_tag = -1; |
| 1333 | |
| 1334 | |
| 1335 | /* After processing right child. */ |
| 1336 | STACK_PUSHX(stack, voidptr, node){ status = tre_stack_push_voidptr(stack, node); if (status != 0) break; }; |
| 1337 | STACK_PUSHX(stack, int, ADDTAGS_AFTER_CAT_RIGHT){ status = tre_stack_push_int(stack, ADDTAGS_AFTER_CAT_RIGHT) ; if (status != 0) break; }; |
| 1338 | |
| 1339 | /* Process right child. */ |
| 1340 | STACK_PUSHX(stack, voidptr, right){ status = tre_stack_push_voidptr(stack, right); if (status != 0) break; }; |
| 1341 | STACK_PUSHX(stack, int, ADDTAGS_RECURSE){ status = tre_stack_push_int(stack, ADDTAGS_RECURSE); if (status != 0) break; }; |
| 1342 | |
| 1343 | /* After processing left child. */ |
| 1344 | STACK_PUSHX(stack, int, next_tag + left->num_tags){ status = tre_stack_push_int(stack, next_tag + left->num_tags ); if (status != 0) break; }; |
| 1345 | if (left->num_tags > 0 && right->num_tags > 0) |
| 1346 | { |
| 1347 | /* Reserve the next tag to the right child. */ |
| 1348 | reserved_tag = next_tag; |
| 1349 | next_tag++; |
| 1350 | } |
| 1351 | STACK_PUSHX(stack, int, reserved_tag){ status = tre_stack_push_int(stack, reserved_tag); if (status != 0) break; }; |
| 1352 | STACK_PUSHX(stack, int, ADDTAGS_AFTER_CAT_LEFT){ status = tre_stack_push_int(stack, ADDTAGS_AFTER_CAT_LEFT); if (status != 0) break; }; |
| 1353 | |
| 1354 | /* Process left child. */ |
| 1355 | STACK_PUSHX(stack, voidptr, left){ status = tre_stack_push_voidptr(stack, left); if (status != 0) break; }; |
| 1356 | STACK_PUSHX(stack, int, ADDTAGS_RECURSE){ status = tre_stack_push_int(stack, ADDTAGS_RECURSE); if (status != 0) break; }; |
| 1357 | |
| 1358 | } |
| 1359 | break; |
| 1360 | case ITERATION: |
| 1361 | { |
| 1362 | tre_iteration_t *iter = node->obj; |
| 1363 | |
| 1364 | if (first_pass) |
| 1365 | { |
| 1366 | STACK_PUSHX(stack, int, regset[0] >= 0 || iter->minimal){ status = tre_stack_push_int(stack, regset[0] >= 0 || iter ->minimal); if (status != 0) break; }; |
| 1367 | } |
| 1368 | else |
| 1369 | { |
| 1370 | STACK_PUSHX(stack, int, tag){ status = tre_stack_push_int(stack, tag); if (status != 0) break ; }; |
| 1371 | STACK_PUSHX(stack, int, iter->minimal){ status = tre_stack_push_int(stack, iter->minimal); if (status != 0) break; }; |
| 1372 | } |
| 1373 | STACK_PUSHX(stack, voidptr, node){ status = tre_stack_push_voidptr(stack, node); if (status != 0) break; }; |
| 1374 | STACK_PUSHX(stack, int, ADDTAGS_AFTER_ITERATION){ status = tre_stack_push_int(stack, ADDTAGS_AFTER_ITERATION) ; if (status != 0) break; }; |
| 1375 | |
| 1376 | STACK_PUSHX(stack, voidptr, iter->arg){ status = tre_stack_push_voidptr(stack, iter->arg); if (status != 0) break; }; |
| 1377 | STACK_PUSHX(stack, int, ADDTAGS_RECURSE){ status = tre_stack_push_int(stack, ADDTAGS_RECURSE); if (status != 0) break; }; |
| 1378 | |
| 1379 | /* Regset is not empty, so add a tag here. */ |
| 1380 | if (regset[0] >= 0 || iter->minimal) |
| 1381 | { |
| 1382 | if (!first_pass) |
| 1383 | { |
| 1384 | int i; |
| 1385 | status = tre_add_tag_left(mem, node, tag); |
| 1386 | if (iter->minimal) |
| 1387 | tnfa->tag_directions[tag] = TRE_TAG_MAXIMIZE; |
| 1388 | else |
| 1389 | tnfa->tag_directions[tag] = direction; |
| 1390 | if (minimal_tag >= 0) |
| 1391 | { |
| 1392 | for (i = 0; tnfa->minimal_tags[i] >= 0; i++); |
| 1393 | tnfa->minimal_tags[i] = tag; |
| 1394 | tnfa->minimal_tags[i + 1] = minimal_tag; |
| 1395 | tnfa->minimal_tags[i + 2] = -1; |
| 1396 | minimal_tag = -1; |
| 1397 | num_minimals++; |
| 1398 | } |
| 1399 | tre_purge_regset(regset, tnfa, tag); |
| 1400 | } |
| 1401 | |
| 1402 | regset[0] = -1; |
| 1403 | tag = next_tag; |
| 1404 | num_tags++; |
| 1405 | next_tag++; |
| 1406 | } |
| 1407 | direction = TRE_TAG_MINIMIZE; |
| 1408 | } |
| 1409 | break; |
| 1410 | case UNION: |
| 1411 | { |
| 1412 | tre_union_t *uni = node->obj; |
| 1413 | tre_ast_node_t *left = uni->left; |
| 1414 | tre_ast_node_t *right = uni->right; |
| 1415 | int left_tag; |
| 1416 | int right_tag; |
| 1417 | |
| 1418 | if (regset[0] >= 0) |
| 1419 | { |
| 1420 | left_tag = next_tag; |
| 1421 | right_tag = next_tag + 1; |
| 1422 | } |
| 1423 | else |
| 1424 | { |
| 1425 | left_tag = tag; |
| 1426 | right_tag = next_tag; |
| 1427 | } |
| 1428 | |
| 1429 | /* After processing right child. */ |
| 1430 | STACK_PUSHX(stack, int, right_tag){ status = tre_stack_push_int(stack, right_tag); if (status != 0) break; }; |
| 1431 | STACK_PUSHX(stack, int, left_tag){ status = tre_stack_push_int(stack, left_tag); if (status != 0) break; }; |
| 1432 | STACK_PUSHX(stack, voidptr, regset){ status = tre_stack_push_voidptr(stack, regset); if (status != 0) break; }; |
| 1433 | STACK_PUSHX(stack, int, regset[0] >= 0){ status = tre_stack_push_int(stack, regset[0] >= 0); if ( status != 0) break; }; |
| 1434 | STACK_PUSHX(stack, voidptr, node){ status = tre_stack_push_voidptr(stack, node); if (status != 0) break; }; |
| 1435 | STACK_PUSHX(stack, voidptr, right){ status = tre_stack_push_voidptr(stack, right); if (status != 0) break; }; |
| 1436 | STACK_PUSHX(stack, voidptr, left){ status = tre_stack_push_voidptr(stack, left); if (status != 0) break; }; |
| 1437 | STACK_PUSHX(stack, int, ADDTAGS_AFTER_UNION_RIGHT){ status = tre_stack_push_int(stack, ADDTAGS_AFTER_UNION_RIGHT ); if (status != 0) break; }; |
| 1438 | |
| 1439 | /* Process right child. */ |
| 1440 | STACK_PUSHX(stack, voidptr, right){ status = tre_stack_push_voidptr(stack, right); if (status != 0) break; }; |
| 1441 | STACK_PUSHX(stack, int, ADDTAGS_RECURSE){ status = tre_stack_push_int(stack, ADDTAGS_RECURSE); if (status != 0) break; }; |
| 1442 | |
| 1443 | /* After processing left child. */ |
| 1444 | STACK_PUSHX(stack, int, ADDTAGS_AFTER_UNION_LEFT){ status = tre_stack_push_int(stack, ADDTAGS_AFTER_UNION_LEFT ); if (status != 0) break; }; |
| 1445 | |
| 1446 | /* Process left child. */ |
| 1447 | STACK_PUSHX(stack, voidptr, left){ status = tre_stack_push_voidptr(stack, left); if (status != 0) break; }; |
| 1448 | STACK_PUSHX(stack, int, ADDTAGS_RECURSE){ status = tre_stack_push_int(stack, ADDTAGS_RECURSE); if (status != 0) break; }; |
| 1449 | |
| 1450 | /* Regset is not empty, so add a tag here. */ |
| 1451 | if (regset[0] >= 0) |
| 1452 | { |
| 1453 | if (!first_pass) |
| 1454 | { |
| 1455 | int i; |
| 1456 | status = tre_add_tag_left(mem, node, tag); |
| 1457 | tnfa->tag_directions[tag] = direction; |
| 1458 | if (minimal_tag >= 0) |
| 1459 | { |
| 1460 | for (i = 0; tnfa->minimal_tags[i] >= 0; i++); |
| 1461 | tnfa->minimal_tags[i] = tag; |
| 1462 | tnfa->minimal_tags[i + 1] = minimal_tag; |
| 1463 | tnfa->minimal_tags[i + 2] = -1; |
| 1464 | minimal_tag = -1; |
| 1465 | num_minimals++; |
| 1466 | } |
| 1467 | tre_purge_regset(regset, tnfa, tag); |
| 1468 | } |
| 1469 | |
| 1470 | regset[0] = -1; |
| 1471 | tag = next_tag; |
| 1472 | num_tags++; |
| 1473 | next_tag++; |
| 1474 | } |
| 1475 | |
| 1476 | if (node->num_submatches > 0) |
| 1477 | { |
| 1478 | /* The next two tags are reserved for markers. */ |
| 1479 | next_tag++; |
| 1480 | tag = next_tag; |
| 1481 | next_tag++; |
| 1482 | } |
| 1483 | |
| 1484 | break; |
| 1485 | } |
| 1486 | } |
| 1487 | |
| 1488 | if (node->submatch_id >= 0) |
| 1489 | { |
| 1490 | int i; |
| 1491 | /* Push this submatch on the parents stack. */ |
| 1492 | for (i = 0; parents[i] >= 0; i++); |
| 1493 | parents[i] = node->submatch_id; |
| 1494 | parents[i + 1] = -1; |
| 1495 | } |
| 1496 | |
| 1497 | break; /* end case: ADDTAGS_RECURSE */ |
| 1498 | |
| 1499 | case ADDTAGS_AFTER_ITERATION: |
| 1500 | { |
| 1501 | int minimal = 0; |
| 1502 | int enter_tag; |
| 1503 | node = tre_stack_pop_voidptr(stack); |
| 1504 | if (first_pass) |
| 1505 | { |
| 1506 | node->num_tags = ((tre_iteration_t *)node->obj)->arg->num_tags |
| 1507 | + tre_stack_pop_int(stack); |
| 1508 | minimal_tag = -1; |
| 1509 | } |
| 1510 | else |
| 1511 | { |
| 1512 | minimal = tre_stack_pop_int(stack); |
| 1513 | enter_tag = tre_stack_pop_int(stack); |
| 1514 | if (minimal) |
| 1515 | minimal_tag = enter_tag; |
| 1516 | } |
| 1517 | |
| 1518 | if (!first_pass) |
| 1519 | { |
| 1520 | if (minimal) |
| 1521 | direction = TRE_TAG_MINIMIZE; |
| 1522 | else |
| 1523 | direction = TRE_TAG_MAXIMIZE; |
| 1524 | } |
| 1525 | break; |
| 1526 | } |
| 1527 | |
| 1528 | case ADDTAGS_AFTER_CAT_LEFT: |
| 1529 | { |
| 1530 | int new_tag = tre_stack_pop_int(stack); |
| 1531 | next_tag = tre_stack_pop_int(stack); |
| 1532 | if (new_tag >= 0) |
| 1533 | { |
| 1534 | tag = new_tag; |
| 1535 | } |
| 1536 | break; |
| 1537 | } |
| 1538 | |
| 1539 | case ADDTAGS_AFTER_CAT_RIGHT: |
| 1540 | node = tre_stack_pop_voidptr(stack); |
| 1541 | if (first_pass) |
| 1542 | node->num_tags = ((tre_catenation_t *)node->obj)->left->num_tags |
| 1543 | + ((tre_catenation_t *)node->obj)->right->num_tags; |
| 1544 | break; |
| 1545 | |
| 1546 | case ADDTAGS_AFTER_UNION_LEFT: |
| 1547 | /* Lift the bottom of the `regset' array so that when processing |
| 1548 | the right operand the items currently in the array are |
| 1549 | invisible. The original bottom was saved at ADDTAGS_UNION and |
| 1550 | will be restored at ADDTAGS_AFTER_UNION_RIGHT below. */ |
| 1551 | while (*regset >= 0) |
| 1552 | regset++; |
| 1553 | break; |
| 1554 | |
| 1555 | case ADDTAGS_AFTER_UNION_RIGHT: |
| 1556 | { |
| 1557 | int added_tags, tag_left, tag_right; |
| 1558 | tre_ast_node_t *left = tre_stack_pop_voidptr(stack); |
| 1559 | tre_ast_node_t *right = tre_stack_pop_voidptr(stack); |
| 1560 | node = tre_stack_pop_voidptr(stack); |
| 1561 | added_tags = tre_stack_pop_int(stack); |
| 1562 | if (first_pass) |
| 1563 | { |
| 1564 | node->num_tags = ((tre_union_t *)node->obj)->left->num_tags |
| 1565 | + ((tre_union_t *)node->obj)->right->num_tags + added_tags |
| 1566 | + ((node->num_submatches > 0) ? 2 : 0); |
| 1567 | } |
| 1568 | regset = tre_stack_pop_voidptr(stack); |
| 1569 | tag_left = tre_stack_pop_int(stack); |
| 1570 | tag_right = tre_stack_pop_int(stack); |
| 1571 | |
| 1572 | /* Add tags after both children, the left child gets a smaller |
| 1573 | tag than the right child. This guarantees that we prefer |
| 1574 | the left child over the right child. */ |
| 1575 | /* XXX - This is not always necessary (if the children have |
| 1576 | tags which must be seen for every match of that child). */ |
| 1577 | /* XXX - Check if this is the only place where tre_add_tag_right |
| 1578 | is used. If so, use tre_add_tag_left (putting the tag before |
| 1579 | the child as opposed after the child) and throw away |
| 1580 | tre_add_tag_right. */ |
| 1581 | if (node->num_submatches > 0) |
| 1582 | { |
| 1583 | if (!first_pass) |
| 1584 | { |
| 1585 | status = tre_add_tag_right(mem, left, tag_left); |
Value stored to 'status' is never read | |
| 1586 | tnfa->tag_directions[tag_left] = TRE_TAG_MAXIMIZE; |
| 1587 | status = tre_add_tag_right(mem, right, tag_right); |
| 1588 | tnfa->tag_directions[tag_right] = TRE_TAG_MAXIMIZE; |
| 1589 | } |
| 1590 | num_tags += 2; |
| 1591 | } |
| 1592 | direction = TRE_TAG_MAXIMIZE; |
| 1593 | break; |
| 1594 | } |
| 1595 | |
| 1596 | default: |
| 1597 | assert(0)(void)0; |
| 1598 | break; |
| 1599 | |
| 1600 | } /* end switch(symbol) */ |
| 1601 | } /* end while(tre_stack_num_objects(stack) > bottom) */ |
| 1602 | |
| 1603 | if (!first_pass) |
| 1604 | tre_purge_regset(regset, tnfa, tag); |
| 1605 | |
| 1606 | if (!first_pass && minimal_tag >= 0) |
| 1607 | { |
| 1608 | int i; |
| 1609 | for (i = 0; tnfa->minimal_tags[i] >= 0; i++); |
| 1610 | tnfa->minimal_tags[i] = tag; |
| 1611 | tnfa->minimal_tags[i + 1] = minimal_tag; |
| 1612 | tnfa->minimal_tags[i + 2] = -1; |
| 1613 | minimal_tag = -1; |
| 1614 | num_minimals++; |
| 1615 | } |
| 1616 | |
| 1617 | assert(tree->num_tags == num_tags)(void)0; |
| 1618 | tnfa->end_tag = num_tags; |
| 1619 | tnfa->num_tags = num_tags; |
| 1620 | tnfa->num_minimals = num_minimals; |
| 1621 | xfreefree(orig_regset); |
| 1622 | xfreefree(parents); |
| 1623 | xfreefree(saved_states); |
| 1624 | return status; |
| 1625 | } |
| 1626 | |
| 1627 | |
| 1628 | |
| 1629 | /* |
| 1630 | AST to TNFA compilation routines. |
| 1631 | */ |
| 1632 | |
| 1633 | typedef enum { |
| 1634 | COPY_RECURSE, |
| 1635 | COPY_SET_RESULT_PTR |
| 1636 | } tre_copyast_symbol_t; |
| 1637 | |
| 1638 | /* Flags for tre_copy_ast(). */ |
| 1639 | #define COPY_REMOVE_TAGS1 1 |
| 1640 | #define COPY_MAXIMIZE_FIRST_TAG2 2 |
| 1641 | |
| 1642 | static reg_errcode_t |
| 1643 | tre_copy_ast(tre_mem_t mem, tre_stack_t *stack, tre_ast_node_t *ast, |
| 1644 | int flags, int *pos_add, tre_tag_direction_t *tag_directions, |
| 1645 | tre_ast_node_t **copy, int *max_pos) |
| 1646 | { |
| 1647 | reg_errcode_t status = REG_OK0; |
| 1648 | int bottom = tre_stack_num_objects(stack); |
| 1649 | int num_copied = 0; |
| 1650 | int first_tag = 1; |
| 1651 | tre_ast_node_t **result = copy; |
| 1652 | tre_copyast_symbol_t symbol; |
| 1653 | |
| 1654 | STACK_PUSH(stack, voidptr, ast)do { status = tre_stack_push_voidptr(stack, ast); } while ( 0 ); |
| 1655 | STACK_PUSH(stack, int, COPY_RECURSE)do { status = tre_stack_push_int(stack, COPY_RECURSE); } while ( 0); |
| 1656 | |
| 1657 | while (status == REG_OK0 && tre_stack_num_objects(stack) > bottom) |
| 1658 | { |
| 1659 | tre_ast_node_t *node; |
| 1660 | if (status != REG_OK0) |
| 1661 | break; |
| 1662 | |
| 1663 | symbol = (tre_copyast_symbol_t)tre_stack_pop_int(stack); |
| 1664 | switch (symbol) |
| 1665 | { |
| 1666 | case COPY_SET_RESULT_PTR: |
| 1667 | result = tre_stack_pop_voidptr(stack); |
| 1668 | break; |
| 1669 | case COPY_RECURSE: |
| 1670 | node = tre_stack_pop_voidptr(stack); |
| 1671 | switch (node->type) |
| 1672 | { |
| 1673 | case LITERAL: |
| 1674 | { |
| 1675 | tre_literal_t *lit = node->obj; |
| 1676 | int pos = lit->position; |
| 1677 | int min = lit->code_min; |
| 1678 | int max = lit->code_max; |
| 1679 | if (!IS_SPECIAL(lit)((lit)->code_min < 0) || IS_BACKREF(lit)((lit)->code_min == -4)) |
| 1680 | { |
| 1681 | /* XXX - e.g. [ab] has only one position but two |
| 1682 | nodes, so we are creating holes in the state space |
| 1683 | here. Not fatal, just wastes memory. */ |
| 1684 | pos += *pos_add; |
| 1685 | num_copied++; |
| 1686 | } |
| 1687 | else if (IS_TAG(lit)((lit)->code_min == -3) && (flags & COPY_REMOVE_TAGS1)) |
| 1688 | { |
| 1689 | /* Change this tag to empty. */ |
| 1690 | min = EMPTY-1; |
| 1691 | max = pos = -1; |
| 1692 | } |
| 1693 | else if (IS_TAG(lit)((lit)->code_min == -3) && (flags & COPY_MAXIMIZE_FIRST_TAG2) |
| 1694 | && first_tag) |
| 1695 | { |
| 1696 | /* Maximize the first tag. */ |
| 1697 | tag_directions[max] = TRE_TAG_MAXIMIZE; |
| 1698 | first_tag = 0; |
| 1699 | } |
| 1700 | *result = tre_ast_new_literal(mem, min, max, pos); |
| 1701 | if (*result == NULL((void*)0)) |
| 1702 | status = REG_ESPACE12; |
| 1703 | else { |
| 1704 | tre_literal_t *p = (*result)->obj; |
| 1705 | p->class = lit->class; |
| 1706 | p->neg_classes = lit->neg_classes; |
| 1707 | } |
| 1708 | |
| 1709 | if (pos > *max_pos) |
| 1710 | *max_pos = pos; |
| 1711 | break; |
| 1712 | } |
| 1713 | case UNION: |
| 1714 | { |
| 1715 | tre_union_t *uni = node->obj; |
| 1716 | tre_union_t *tmp; |
| 1717 | *result = tre_ast_new_union(mem, uni->left, uni->right); |
| 1718 | if (*result == NULL((void*)0)) |
| 1719 | { |
| 1720 | status = REG_ESPACE12; |
| 1721 | break; |
| 1722 | } |
| 1723 | tmp = (*result)->obj; |
| 1724 | result = &tmp->left; |
| 1725 | STACK_PUSHX(stack, voidptr, uni->right){ status = tre_stack_push_voidptr(stack, uni->right); if ( status != 0) break; }; |
| 1726 | STACK_PUSHX(stack, int, COPY_RECURSE){ status = tre_stack_push_int(stack, COPY_RECURSE); if (status != 0) break; }; |
| 1727 | STACK_PUSHX(stack, voidptr, &tmp->right){ status = tre_stack_push_voidptr(stack, &tmp->right); if (status != 0) break; }; |
| 1728 | STACK_PUSHX(stack, int, COPY_SET_RESULT_PTR){ status = tre_stack_push_int(stack, COPY_SET_RESULT_PTR); if (status != 0) break; }; |
| 1729 | STACK_PUSHX(stack, voidptr, uni->left){ status = tre_stack_push_voidptr(stack, uni->left); if (status != 0) break; }; |
| 1730 | STACK_PUSHX(stack, int, COPY_RECURSE){ status = tre_stack_push_int(stack, COPY_RECURSE); if (status != 0) break; }; |
| 1731 | break; |
| 1732 | } |
| 1733 | case CATENATION: |
| 1734 | { |
| 1735 | tre_catenation_t *cat = node->obj; |
| 1736 | tre_catenation_t *tmp; |
| 1737 | *result = tre_ast_new_catenation(mem, cat->left, cat->right); |
| 1738 | if (*result == NULL((void*)0)) |
| 1739 | { |
| 1740 | status = REG_ESPACE12; |
| 1741 | break; |
| 1742 | } |
| 1743 | tmp = (*result)->obj; |
| 1744 | tmp->left = NULL((void*)0); |
| 1745 | tmp->right = NULL((void*)0); |
| 1746 | result = &tmp->left; |
| 1747 | |
| 1748 | STACK_PUSHX(stack, voidptr, cat->right){ status = tre_stack_push_voidptr(stack, cat->right); if ( status != 0) break; }; |
| 1749 | STACK_PUSHX(stack, int, COPY_RECURSE){ status = tre_stack_push_int(stack, COPY_RECURSE); if (status != 0) break; }; |
| 1750 | STACK_PUSHX(stack, voidptr, &tmp->right){ status = tre_stack_push_voidptr(stack, &tmp->right); if (status != 0) break; }; |
| 1751 | STACK_PUSHX(stack, int, COPY_SET_RESULT_PTR){ status = tre_stack_push_int(stack, COPY_SET_RESULT_PTR); if (status != 0) break; }; |
| 1752 | STACK_PUSHX(stack, voidptr, cat->left){ status = tre_stack_push_voidptr(stack, cat->left); if (status != 0) break; }; |
| 1753 | STACK_PUSHX(stack, int, COPY_RECURSE){ status = tre_stack_push_int(stack, COPY_RECURSE); if (status != 0) break; }; |
| 1754 | break; |
| 1755 | } |
| 1756 | case ITERATION: |
| 1757 | { |
| 1758 | tre_iteration_t *iter = node->obj; |
| 1759 | STACK_PUSHX(stack, voidptr, iter->arg){ status = tre_stack_push_voidptr(stack, iter->arg); if (status != 0) break; }; |
| 1760 | STACK_PUSHX(stack, int, COPY_RECURSE){ status = tre_stack_push_int(stack, COPY_RECURSE); if (status != 0) break; }; |
| 1761 | *result = tre_ast_new_iter(mem, iter->arg, iter->min, |
| 1762 | iter->max, iter->minimal); |
| 1763 | if (*result == NULL((void*)0)) |
| 1764 | { |
| 1765 | status = REG_ESPACE12; |
| 1766 | break; |
| 1767 | } |
| 1768 | iter = (*result)->obj; |
| 1769 | result = &iter->arg; |
| 1770 | break; |
| 1771 | } |
| 1772 | default: |
| 1773 | assert(0)(void)0; |
| 1774 | break; |
| 1775 | } |
| 1776 | break; |
| 1777 | } |
| 1778 | } |
| 1779 | *pos_add += num_copied; |
| 1780 | return status; |
| 1781 | } |
| 1782 | |
| 1783 | typedef enum { |
| 1784 | EXPAND_RECURSE, |
| 1785 | EXPAND_AFTER_ITER |
| 1786 | } tre_expand_ast_symbol_t; |
| 1787 | |
| 1788 | /* Expands each iteration node that has a finite nonzero minimum or maximum |
| 1789 | iteration count to a catenated sequence of copies of the node. */ |
| 1790 | static reg_errcode_t |
| 1791 | tre_expand_ast(tre_mem_t mem, tre_stack_t *stack, tre_ast_node_t *ast, |
| 1792 | int *position, tre_tag_direction_t *tag_directions) |
| 1793 | { |
| 1794 | reg_errcode_t status = REG_OK0; |
| 1795 | int bottom = tre_stack_num_objects(stack); |
| 1796 | int pos_add = 0; |
| 1797 | int pos_add_total = 0; |
| 1798 | int max_pos = 0; |
| 1799 | int iter_depth = 0; |
| 1800 | |
| 1801 | STACK_PUSHR(stack, voidptr, ast){ reg_errcode_t _status; _status = tre_stack_push_voidptr(stack , ast); if (_status != 0) return _status; }; |
| 1802 | STACK_PUSHR(stack, int, EXPAND_RECURSE){ reg_errcode_t _status; _status = tre_stack_push_int(stack, EXPAND_RECURSE ); if (_status != 0) return _status; }; |
| 1803 | while (status == REG_OK0 && tre_stack_num_objects(stack) > bottom) |
| 1804 | { |
| 1805 | tre_ast_node_t *node; |
| 1806 | tre_expand_ast_symbol_t symbol; |
| 1807 | |
| 1808 | if (status != REG_OK0) |
| 1809 | break; |
| 1810 | |
| 1811 | symbol = (tre_expand_ast_symbol_t)tre_stack_pop_int(stack); |
| 1812 | node = tre_stack_pop_voidptr(stack); |
| 1813 | switch (symbol) |
| 1814 | { |
| 1815 | case EXPAND_RECURSE: |
| 1816 | switch (node->type) |
| 1817 | { |
| 1818 | case LITERAL: |
| 1819 | { |
| 1820 | tre_literal_t *lit= node->obj; |
| 1821 | if (!IS_SPECIAL(lit)((lit)->code_min < 0) || IS_BACKREF(lit)((lit)->code_min == -4)) |
| 1822 | { |
| 1823 | lit->position += pos_add; |
| 1824 | if (lit->position > max_pos) |
| 1825 | max_pos = lit->position; |
| 1826 | } |
| 1827 | break; |
| 1828 | } |
| 1829 | case UNION: |
| 1830 | { |
| 1831 | tre_union_t *uni = node->obj; |
| 1832 | STACK_PUSHX(stack, voidptr, uni->right){ status = tre_stack_push_voidptr(stack, uni->right); if ( status != 0) break; }; |
| 1833 | STACK_PUSHX(stack, int, EXPAND_RECURSE){ status = tre_stack_push_int(stack, EXPAND_RECURSE); if (status != 0) break; }; |
| 1834 | STACK_PUSHX(stack, voidptr, uni->left){ status = tre_stack_push_voidptr(stack, uni->left); if (status != 0) break; }; |
| 1835 | STACK_PUSHX(stack, int, EXPAND_RECURSE){ status = tre_stack_push_int(stack, EXPAND_RECURSE); if (status != 0) break; }; |
| 1836 | break; |
| 1837 | } |
| 1838 | case CATENATION: |
| 1839 | { |
| 1840 | tre_catenation_t *cat = node->obj; |
| 1841 | STACK_PUSHX(stack, voidptr, cat->right){ status = tre_stack_push_voidptr(stack, cat->right); if ( status != 0) break; }; |
| 1842 | STACK_PUSHX(stack, int, EXPAND_RECURSE){ status = tre_stack_push_int(stack, EXPAND_RECURSE); if (status != 0) break; }; |
| 1843 | STACK_PUSHX(stack, voidptr, cat->left){ status = tre_stack_push_voidptr(stack, cat->left); if (status != 0) break; }; |
| 1844 | STACK_PUSHX(stack, int, EXPAND_RECURSE){ status = tre_stack_push_int(stack, EXPAND_RECURSE); if (status != 0) break; }; |
| 1845 | break; |
| 1846 | } |
| 1847 | case ITERATION: |
| 1848 | { |
| 1849 | tre_iteration_t *iter = node->obj; |
| 1850 | STACK_PUSHX(stack, int, pos_add){ status = tre_stack_push_int(stack, pos_add); if (status != 0 ) break; }; |
| 1851 | STACK_PUSHX(stack, voidptr, node){ status = tre_stack_push_voidptr(stack, node); if (status != 0) break; }; |
| 1852 | STACK_PUSHX(stack, int, EXPAND_AFTER_ITER){ status = tre_stack_push_int(stack, EXPAND_AFTER_ITER); if ( status != 0) break; }; |
| 1853 | STACK_PUSHX(stack, voidptr, iter->arg){ status = tre_stack_push_voidptr(stack, iter->arg); if (status != 0) break; }; |
| 1854 | STACK_PUSHX(stack, int, EXPAND_RECURSE){ status = tre_stack_push_int(stack, EXPAND_RECURSE); if (status != 0) break; }; |
| 1855 | /* If we are going to expand this node at EXPAND_AFTER_ITER |
| 1856 | then don't increase the `pos' fields of the nodes now, it |
| 1857 | will get done when expanding. */ |
| 1858 | if (iter->min > 1 || iter->max > 1) |
| 1859 | pos_add = 0; |
| 1860 | iter_depth++; |
| 1861 | break; |
| 1862 | } |
| 1863 | default: |
| 1864 | assert(0)(void)0; |
| 1865 | break; |
| 1866 | } |
| 1867 | break; |
| 1868 | case EXPAND_AFTER_ITER: |
| 1869 | { |
| 1870 | tre_iteration_t *iter = node->obj; |
| 1871 | int pos_add_last; |
| 1872 | pos_add = tre_stack_pop_int(stack); |
| 1873 | pos_add_last = pos_add; |
| 1874 | if (iter->min > 1 || iter->max > 1) |
| 1875 | { |
| 1876 | tre_ast_node_t *seq1 = NULL((void*)0), *seq2 = NULL((void*)0); |
| 1877 | int j; |
| 1878 | int pos_add_save = pos_add; |
| 1879 | |
| 1880 | /* Create a catenated sequence of copies of the node. */ |
| 1881 | for (j = 0; j < iter->min; j++) |
| 1882 | { |
| 1883 | tre_ast_node_t *copy; |
| 1884 | /* Remove tags from all but the last copy. */ |
| 1885 | int flags = ((j + 1 < iter->min) |
| 1886 | ? COPY_REMOVE_TAGS1 |
| 1887 | : COPY_MAXIMIZE_FIRST_TAG2); |
| 1888 | pos_add_save = pos_add; |
| 1889 | status = tre_copy_ast(mem, stack, iter->arg, flags, |
| 1890 | &pos_add, tag_directions, ©, |
| 1891 | &max_pos); |
| 1892 | if (status != REG_OK0) |
| 1893 | return status; |
| 1894 | if (seq1 != NULL((void*)0)) |
| 1895 | seq1 = tre_ast_new_catenation(mem, seq1, copy); |
| 1896 | else |
| 1897 | seq1 = copy; |
| 1898 | if (seq1 == NULL((void*)0)) |
| 1899 | return REG_ESPACE12; |
| 1900 | } |
| 1901 | |
| 1902 | if (iter->max == -1) |
| 1903 | { |
| 1904 | /* No upper limit. */ |
| 1905 | pos_add_save = pos_add; |
| 1906 | status = tre_copy_ast(mem, stack, iter->arg, 0, |
| 1907 | &pos_add, NULL((void*)0), &seq2, &max_pos); |
| 1908 | if (status != REG_OK0) |
| 1909 | return status; |
| 1910 | seq2 = tre_ast_new_iter(mem, seq2, 0, -1, 0); |
| 1911 | if (seq2 == NULL((void*)0)) |
| 1912 | return REG_ESPACE12; |
| 1913 | } |
| 1914 | else |
| 1915 | { |
| 1916 | for (j = iter->min; j < iter->max; j++) |
| 1917 | { |
| 1918 | tre_ast_node_t *tmp, *copy; |
| 1919 | pos_add_save = pos_add; |
| 1920 | status = tre_copy_ast(mem, stack, iter->arg, 0, |
| 1921 | &pos_add, NULL((void*)0), ©, &max_pos); |
| 1922 | if (status != REG_OK0) |
| 1923 | return status; |
| 1924 | if (seq2 != NULL((void*)0)) |
| 1925 | seq2 = tre_ast_new_catenation(mem, copy, seq2); |
| 1926 | else |
| 1927 | seq2 = copy; |
| 1928 | if (seq2 == NULL((void*)0)) |
| 1929 | return REG_ESPACE12; |
| 1930 | tmp = tre_ast_new_literal(mem, EMPTY-1, -1, -1); |
| 1931 | if (tmp == NULL((void*)0)) |
| 1932 | return REG_ESPACE12; |
| 1933 | seq2 = tre_ast_new_union(mem, tmp, seq2); |
| 1934 | if (seq2 == NULL((void*)0)) |
| 1935 | return REG_ESPACE12; |
| 1936 | } |
| 1937 | } |
| 1938 | |
| 1939 | pos_add = pos_add_save; |
| 1940 | if (seq1 == NULL((void*)0)) |
| 1941 | seq1 = seq2; |
| 1942 | else if (seq2 != NULL((void*)0)) |
| 1943 | seq1 = tre_ast_new_catenation(mem, seq1, seq2); |
| 1944 | if (seq1 == NULL((void*)0)) |
| 1945 | return REG_ESPACE12; |
| 1946 | node->obj = seq1->obj; |
| 1947 | node->type = seq1->type; |
| 1948 | } |
| 1949 | |
| 1950 | iter_depth--; |
| 1951 | pos_add_total += pos_add - pos_add_last; |
| 1952 | if (iter_depth == 0) |
| 1953 | pos_add = pos_add_total; |
| 1954 | |
| 1955 | break; |
| 1956 | } |
| 1957 | default: |
| 1958 | assert(0)(void)0; |
| 1959 | break; |
| 1960 | } |
| 1961 | } |
| 1962 | |
| 1963 | *position += pos_add_total; |
| 1964 | |
| 1965 | /* `max_pos' should never be larger than `*position' if the above |
| 1966 | code works, but just an extra safeguard let's make sure |
| 1967 | `*position' is set large enough so enough memory will be |
| 1968 | allocated for the transition table. */ |
| 1969 | if (max_pos > *position) |
| 1970 | *position = max_pos; |
| 1971 | |
| 1972 | return status; |
| 1973 | } |
| 1974 | |
| 1975 | static tre_pos_and_tags_t * |
| 1976 | tre_set_empty(tre_mem_t mem) |
| 1977 | { |
| 1978 | tre_pos_and_tags_t *new_set; |
| 1979 | |
| 1980 | new_set = tre_mem_calloc(mem, sizeof(*new_set))__tre_mem_alloc_impl(mem, 0, ((void*)0), 1, sizeof(*new_set)); |
| 1981 | if (new_set == NULL((void*)0)) |
| 1982 | return NULL((void*)0); |
| 1983 | |
| 1984 | new_set[0].position = -1; |
| 1985 | new_set[0].code_min = -1; |
| 1986 | new_set[0].code_max = -1; |
| 1987 | |
| 1988 | return new_set; |
| 1989 | } |
| 1990 | |
| 1991 | static tre_pos_and_tags_t * |
| 1992 | tre_set_one(tre_mem_t mem, int position, int code_min, int code_max, |
| 1993 | tre_ctype_t class, tre_ctype_t *neg_classes, int backref) |
| 1994 | { |
| 1995 | tre_pos_and_tags_t *new_set; |
| 1996 | |
| 1997 | new_set = tre_mem_calloc(mem, sizeof(*new_set) * 2)__tre_mem_alloc_impl(mem, 0, ((void*)0), 1, sizeof(*new_set) * 2); |
| 1998 | if (new_set == NULL((void*)0)) |
| 1999 | return NULL((void*)0); |
| 2000 | |
| 2001 | new_set[0].position = position; |
| 2002 | new_set[0].code_min = code_min; |
| 2003 | new_set[0].code_max = code_max; |
| 2004 | new_set[0].class = class; |
| 2005 | new_set[0].neg_classes = neg_classes; |
| 2006 | new_set[0].backref = backref; |
| 2007 | new_set[1].position = -1; |
| 2008 | new_set[1].code_min = -1; |
| 2009 | new_set[1].code_max = -1; |
| 2010 | |
| 2011 | return new_set; |
| 2012 | } |
| 2013 | |
| 2014 | static tre_pos_and_tags_t * |
| 2015 | tre_set_union(tre_mem_t mem, tre_pos_and_tags_t *set1, tre_pos_and_tags_t *set2, |
| 2016 | int *tags, int assertions) |
| 2017 | { |
| 2018 | int s1, s2, i, j; |
| 2019 | tre_pos_and_tags_t *new_set; |
| 2020 | int *new_tags; |
| 2021 | int num_tags; |
| 2022 | |
| 2023 | for (num_tags = 0; tags != NULL((void*)0) && tags[num_tags] >= 0; num_tags++); |
| 2024 | for (s1 = 0; set1[s1].position >= 0; s1++); |
| 2025 | for (s2 = 0; set2[s2].position >= 0; s2++); |
| 2026 | new_set = tre_mem_calloc(mem, sizeof(*new_set) * (s1 + s2 + 1))__tre_mem_alloc_impl(mem, 0, ((void*)0), 1, sizeof(*new_set) * (s1 + s2 + 1)); |
| 2027 | if (!new_set ) |
| 2028 | return NULL((void*)0); |
| 2029 | |
| 2030 | for (s1 = 0; set1[s1].position >= 0; s1++) |
| 2031 | { |
| 2032 | new_set[s1].position = set1[s1].position; |
| 2033 | new_set[s1].code_min = set1[s1].code_min; |
| 2034 | new_set[s1].code_max = set1[s1].code_max; |
| 2035 | new_set[s1].assertions = set1[s1].assertions | assertions; |
| 2036 | new_set[s1].class = set1[s1].class; |
| 2037 | new_set[s1].neg_classes = set1[s1].neg_classes; |
| 2038 | new_set[s1].backref = set1[s1].backref; |
| 2039 | if (set1[s1].tags == NULL((void*)0) && tags == NULL((void*)0)) |
| 2040 | new_set[s1].tags = NULL((void*)0); |
| 2041 | else |
| 2042 | { |
| 2043 | for (i = 0; set1[s1].tags != NULL((void*)0) && set1[s1].tags[i] >= 0; i++); |
| 2044 | new_tags = tre_mem_alloc(mem, (sizeof(*new_tags)__tre_mem_alloc_impl(mem, 0, ((void*)0), 0, (sizeof(*new_tags ) * (i + num_tags + 1))) |
| 2045 | * (i + num_tags + 1)))__tre_mem_alloc_impl(mem, 0, ((void*)0), 0, (sizeof(*new_tags ) * (i + num_tags + 1))); |
| 2046 | if (new_tags == NULL((void*)0)) |
| 2047 | return NULL((void*)0); |
| 2048 | for (j = 0; j < i; j++) |
| 2049 | new_tags[j] = set1[s1].tags[j]; |
| 2050 | for (i = 0; i < num_tags; i++) |
| 2051 | new_tags[j + i] = tags[i]; |
| 2052 | new_tags[j + i] = -1; |
| 2053 | new_set[s1].tags = new_tags; |
| 2054 | } |
| 2055 | } |
| 2056 | |
| 2057 | for (s2 = 0; set2[s2].position >= 0; s2++) |
| 2058 | { |
| 2059 | new_set[s1 + s2].position = set2[s2].position; |
| 2060 | new_set[s1 + s2].code_min = set2[s2].code_min; |
| 2061 | new_set[s1 + s2].code_max = set2[s2].code_max; |
| 2062 | /* XXX - why not | assertions here as well? */ |
| 2063 | new_set[s1 + s2].assertions = set2[s2].assertions; |
| 2064 | new_set[s1 + s2].class = set2[s2].class; |
| 2065 | new_set[s1 + s2].neg_classes = set2[s2].neg_classes; |
| 2066 | new_set[s1 + s2].backref = set2[s2].backref; |
| 2067 | if (set2[s2].tags == NULL((void*)0)) |
| 2068 | new_set[s1 + s2].tags = NULL((void*)0); |
| 2069 | else |
| 2070 | { |
| 2071 | for (i = 0; set2[s2].tags[i] >= 0; i++); |
| 2072 | new_tags = tre_mem_alloc(mem, sizeof(*new_tags) * (i + 1))__tre_mem_alloc_impl(mem, 0, ((void*)0), 0, sizeof(*new_tags) * (i + 1)); |
| 2073 | if (new_tags == NULL((void*)0)) |
| 2074 | return NULL((void*)0); |
| 2075 | for (j = 0; j < i; j++) |
| 2076 | new_tags[j] = set2[s2].tags[j]; |
| 2077 | new_tags[j] = -1; |
| 2078 | new_set[s1 + s2].tags = new_tags; |
| 2079 | } |
| 2080 | } |
| 2081 | new_set[s1 + s2].position = -1; |
| 2082 | return new_set; |
| 2083 | } |
| 2084 | |
| 2085 | /* Finds the empty path through `node' which is the one that should be |
| 2086 | taken according to POSIX.2 rules, and adds the tags on that path to |
| 2087 | `tags'. `tags' may be NULL. If `num_tags_seen' is not NULL, it is |
| 2088 | set to the number of tags seen on the path. */ |
| 2089 | static reg_errcode_t |
| 2090 | tre_match_empty(tre_stack_t *stack, tre_ast_node_t *node, int *tags, |
| 2091 | int *assertions, int *num_tags_seen) |
| 2092 | { |
| 2093 | tre_literal_t *lit; |
| 2094 | tre_union_t *uni; |
| 2095 | tre_catenation_t *cat; |
| 2096 | tre_iteration_t *iter; |
| 2097 | int i; |
| 2098 | int bottom = tre_stack_num_objects(stack); |
| 2099 | reg_errcode_t status = REG_OK0; |
| 2100 | if (num_tags_seen) |
| 2101 | *num_tags_seen = 0; |
| 2102 | |
| 2103 | status = tre_stack_push_voidptr(stack, node); |
| 2104 | |
| 2105 | /* Walk through the tree recursively. */ |
| 2106 | while (status == REG_OK0 && tre_stack_num_objects(stack) > bottom) |
| 2107 | { |
| 2108 | node = tre_stack_pop_voidptr(stack); |
| 2109 | |
| 2110 | switch (node->type) |
| 2111 | { |
| 2112 | case LITERAL: |
| 2113 | lit = (tre_literal_t *)node->obj; |
| 2114 | switch (lit->code_min) |
| 2115 | { |
| 2116 | case TAG-3: |
| 2117 | if (lit->code_max >= 0) |
| 2118 | { |
| 2119 | if (tags != NULL((void*)0)) |
| 2120 | { |
| 2121 | /* Add the tag to `tags'. */ |
| 2122 | for (i = 0; tags[i] >= 0; i++) |
| 2123 | if (tags[i] == lit->code_max) |
| 2124 | break; |
| 2125 | if (tags[i] < 0) |
| 2126 | { |
| 2127 | tags[i] = lit->code_max; |
| 2128 | tags[i + 1] = -1; |
| 2129 | } |
| 2130 | } |
| 2131 | if (num_tags_seen) |
| 2132 | (*num_tags_seen)++; |
| 2133 | } |
| 2134 | break; |
| 2135 | case ASSERTION-2: |
| 2136 | assert(lit->code_max >= 1(void)0 |
| 2137 | || lit->code_max <= ASSERT_LAST)(void)0; |
| 2138 | if (assertions != NULL((void*)0)) |
| 2139 | *assertions |= lit->code_max; |
| 2140 | break; |
| 2141 | case EMPTY-1: |
| 2142 | break; |
| 2143 | default: |
| 2144 | assert(0)(void)0; |
| 2145 | break; |
| 2146 | } |
| 2147 | break; |
| 2148 | |
| 2149 | case UNION: |
| 2150 | /* Subexpressions starting earlier take priority over ones |
| 2151 | starting later, so we prefer the left subexpression over the |
| 2152 | right subexpression. */ |
| 2153 | uni = (tre_union_t *)node->obj; |
| 2154 | if (uni->left->nullable) |
| 2155 | STACK_PUSHX(stack, voidptr, uni->left){ status = tre_stack_push_voidptr(stack, uni->left); if (status != 0) break; } |
| 2156 | else if (uni->right->nullable) |
| 2157 | STACK_PUSHX(stack, voidptr, uni->right){ status = tre_stack_push_voidptr(stack, uni->right); if ( status != 0) break; } |
| 2158 | else |
| 2159 | assert(0)(void)0; |
| 2160 | break; |
| 2161 | |
| 2162 | case CATENATION: |
| 2163 | /* The path must go through both children. */ |
| 2164 | cat = (tre_catenation_t *)node->obj; |
| 2165 | assert(cat->left->nullable)(void)0; |
| 2166 | assert(cat->right->nullable)(void)0; |
| 2167 | STACK_PUSHX(stack, voidptr, cat->left){ status = tre_stack_push_voidptr(stack, cat->left); if (status != 0) break; }; |
| 2168 | STACK_PUSHX(stack, voidptr, cat->right){ status = tre_stack_push_voidptr(stack, cat->right); if ( status != 0) break; }; |
| 2169 | break; |
| 2170 | |
| 2171 | case ITERATION: |
| 2172 | /* A match with an empty string is preferred over no match at |
| 2173 | all, so we go through the argument if possible. */ |
| 2174 | iter = (tre_iteration_t *)node->obj; |
| 2175 | if (iter->arg->nullable) |
| 2176 | STACK_PUSHX(stack, voidptr, iter->arg){ status = tre_stack_push_voidptr(stack, iter->arg); if (status != 0) break; }; |
| 2177 | break; |
| 2178 | |
| 2179 | default: |
| 2180 | assert(0)(void)0; |
| 2181 | break; |
| 2182 | } |
| 2183 | } |
| 2184 | |
| 2185 | return status; |
| 2186 | } |
| 2187 | |
| 2188 | |
| 2189 | typedef enum { |
| 2190 | NFL_RECURSE, |
| 2191 | NFL_POST_UNION, |
| 2192 | NFL_POST_CATENATION, |
| 2193 | NFL_POST_ITERATION |
| 2194 | } tre_nfl_stack_symbol_t; |
| 2195 | |
| 2196 | |
| 2197 | /* Computes and fills in the fields `nullable', `firstpos', and `lastpos' for |
| 2198 | the nodes of the AST `tree'. */ |
| 2199 | static reg_errcode_t |
| 2200 | tre_compute_nfl(tre_mem_t mem, tre_stack_t *stack, tre_ast_node_t *tree) |
| 2201 | { |
| 2202 | int bottom = tre_stack_num_objects(stack); |
| 2203 | |
| 2204 | STACK_PUSHR(stack, voidptr, tree){ reg_errcode_t _status; _status = tre_stack_push_voidptr(stack , tree); if (_status != 0) return _status; }; |
| 2205 | STACK_PUSHR(stack, int, NFL_RECURSE){ reg_errcode_t _status; _status = tre_stack_push_int(stack, NFL_RECURSE ); if (_status != 0) return _status; }; |
| 2206 | |
| 2207 | while (tre_stack_num_objects(stack) > bottom) |
| 2208 | { |
| 2209 | tre_nfl_stack_symbol_t symbol; |
| 2210 | tre_ast_node_t *node; |
| 2211 | |
| 2212 | symbol = (tre_nfl_stack_symbol_t)tre_stack_pop_int(stack); |
| 2213 | node = tre_stack_pop_voidptr(stack); |
| 2214 | switch (symbol) |
| 2215 | { |
| 2216 | case NFL_RECURSE: |
| 2217 | switch (node->type) |
| 2218 | { |
| 2219 | case LITERAL: |
| 2220 | { |
| 2221 | tre_literal_t *lit = (tre_literal_t *)node->obj; |
| 2222 | if (IS_BACKREF(lit)((lit)->code_min == -4)) |
| 2223 | { |
| 2224 | /* Back references: nullable = false, firstpos = {i}, |
| 2225 | lastpos = {i}. */ |
| 2226 | node->nullable = 0; |
| 2227 | node->firstpos = tre_set_one(mem, lit->position, 0, |
| 2228 | TRE_CHAR_MAX0x10ffff, 0, NULL((void*)0), -1); |
| 2229 | if (!node->firstpos) |
| 2230 | return REG_ESPACE12; |
| 2231 | node->lastpos = tre_set_one(mem, lit->position, 0, |
| 2232 | TRE_CHAR_MAX0x10ffff, 0, NULL((void*)0), |
| 2233 | (int)lit->code_max); |
| 2234 | if (!node->lastpos) |
| 2235 | return REG_ESPACE12; |
| 2236 | } |
| 2237 | else if (lit->code_min < 0) |
| 2238 | { |
| 2239 | /* Tags, empty strings, params, and zero width assertions: |
| 2240 | nullable = true, firstpos = {}, and lastpos = {}. */ |
| 2241 | node->nullable = 1; |
| 2242 | node->firstpos = tre_set_empty(mem); |
| 2243 | if (!node->firstpos) |
| 2244 | return REG_ESPACE12; |
| 2245 | node->lastpos = tre_set_empty(mem); |
| 2246 | if (!node->lastpos) |
| 2247 | return REG_ESPACE12; |
| 2248 | } |
| 2249 | else |
| 2250 | { |
| 2251 | /* Literal at position i: nullable = false, firstpos = {i}, |
| 2252 | lastpos = {i}. */ |
| 2253 | node->nullable = 0; |
| 2254 | node->firstpos = |
| 2255 | tre_set_one(mem, lit->position, (int)lit->code_min, |
| 2256 | (int)lit->code_max, 0, NULL((void*)0), -1); |
| 2257 | if (!node->firstpos) |
| 2258 | return REG_ESPACE12; |
| 2259 | node->lastpos = tre_set_one(mem, lit->position, |
| 2260 | (int)lit->code_min, |
| 2261 | (int)lit->code_max, |
| 2262 | lit->class, lit->neg_classes, |
| 2263 | -1); |
| 2264 | if (!node->lastpos) |
| 2265 | return REG_ESPACE12; |
| 2266 | } |
| 2267 | break; |
| 2268 | } |
| 2269 | |
| 2270 | case UNION: |
| 2271 | /* Compute the attributes for the two subtrees, and after that |
| 2272 | for this node. */ |
| 2273 | STACK_PUSHR(stack, voidptr, node){ reg_errcode_t _status; _status = tre_stack_push_voidptr(stack , node); if (_status != 0) return _status; }; |
| 2274 | STACK_PUSHR(stack, int, NFL_POST_UNION){ reg_errcode_t _status; _status = tre_stack_push_int(stack, NFL_POST_UNION ); if (_status != 0) return _status; }; |
| 2275 | STACK_PUSHR(stack, voidptr, ((tre_union_t *)node->obj)->right){ reg_errcode_t _status; _status = tre_stack_push_voidptr(stack , ((tre_union_t *)node->obj)->right); if (_status != 0) return _status; }; |
| 2276 | STACK_PUSHR(stack, int, NFL_RECURSE){ reg_errcode_t _status; _status = tre_stack_push_int(stack, NFL_RECURSE ); if (_status != 0) return _status; }; |
| 2277 | STACK_PUSHR(stack, voidptr, ((tre_union_t *)node->obj)->left){ reg_errcode_t _status; _status = tre_stack_push_voidptr(stack , ((tre_union_t *)node->obj)->left); if (_status != 0) return _status; }; |
| 2278 | STACK_PUSHR(stack, int, NFL_RECURSE){ reg_errcode_t _status; _status = tre_stack_push_int(stack, NFL_RECURSE ); if (_status != 0) return _status; }; |
| 2279 | break; |
| 2280 | |
| 2281 | case CATENATION: |
| 2282 | /* Compute the attributes for the two subtrees, and after that |
| 2283 | for this node. */ |
| 2284 | STACK_PUSHR(stack, voidptr, node){ reg_errcode_t _status; _status = tre_stack_push_voidptr(stack , node); if (_status != 0) return _status; }; |
| 2285 | STACK_PUSHR(stack, int, NFL_POST_CATENATION){ reg_errcode_t _status; _status = tre_stack_push_int(stack, NFL_POST_CATENATION ); if (_status != 0) return _status; }; |
| 2286 | STACK_PUSHR(stack, voidptr, ((tre_catenation_t *)node->obj)->right){ reg_errcode_t _status; _status = tre_stack_push_voidptr(stack , ((tre_catenation_t *)node->obj)->right); if (_status != 0) return _status; }; |
| 2287 | STACK_PUSHR(stack, int, NFL_RECURSE){ reg_errcode_t _status; _status = tre_stack_push_int(stack, NFL_RECURSE ); if (_status != 0) return _status; }; |
| 2288 | STACK_PUSHR(stack, voidptr, ((tre_catenation_t *)node->obj)->left){ reg_errcode_t _status; _status = tre_stack_push_voidptr(stack , ((tre_catenation_t *)node->obj)->left); if (_status != 0) return _status; }; |
| 2289 | STACK_PUSHR(stack, int, NFL_RECURSE){ reg_errcode_t _status; _status = tre_stack_push_int(stack, NFL_RECURSE ); if (_status != 0) return _status; }; |
| 2290 | break; |
| 2291 | |
| 2292 | case ITERATION: |
| 2293 | /* Compute the attributes for the subtree, and after that for |
| 2294 | this node. */ |
| 2295 | STACK_PUSHR(stack, voidptr, node){ reg_errcode_t _status; _status = tre_stack_push_voidptr(stack , node); if (_status != 0) return _status; }; |
| 2296 | STACK_PUSHR(stack, int, NFL_POST_ITERATION){ reg_errcode_t _status; _status = tre_stack_push_int(stack, NFL_POST_ITERATION ); if (_status != 0) return _status; }; |
| 2297 | STACK_PUSHR(stack, voidptr, ((tre_iteration_t *)node->obj)->arg){ reg_errcode_t _status; _status = tre_stack_push_voidptr(stack , ((tre_iteration_t *)node->obj)->arg); if (_status != 0 ) return _status; }; |
| 2298 | STACK_PUSHR(stack, int, NFL_RECURSE){ reg_errcode_t _status; _status = tre_stack_push_int(stack, NFL_RECURSE ); if (_status != 0) return _status; }; |
| 2299 | break; |
| 2300 | } |
| 2301 | break; /* end case: NFL_RECURSE */ |
| 2302 | |
| 2303 | case NFL_POST_UNION: |
| 2304 | { |
| 2305 | tre_union_t *uni = (tre_union_t *)node->obj; |
| 2306 | node->nullable = uni->left->nullable || uni->right->nullable; |
| 2307 | node->firstpos = tre_set_union(mem, uni->left->firstpos, |
| 2308 | uni->right->firstpos, NULL((void*)0), 0); |
| 2309 | if (!node->firstpos) |
| 2310 | return REG_ESPACE12; |
| 2311 | node->lastpos = tre_set_union(mem, uni->left->lastpos, |
| 2312 | uni->right->lastpos, NULL((void*)0), 0); |
| 2313 | if (!node->lastpos) |
| 2314 | return REG_ESPACE12; |
| 2315 | break; |
| 2316 | } |
| 2317 | |
| 2318 | case NFL_POST_ITERATION: |
| 2319 | { |
| 2320 | tre_iteration_t *iter = (tre_iteration_t *)node->obj; |
| 2321 | |
| 2322 | if (iter->min == 0 || iter->arg->nullable) |
| 2323 | node->nullable = 1; |
| 2324 | else |
| 2325 | node->nullable = 0; |
| 2326 | node->firstpos = iter->arg->firstpos; |
| 2327 | node->lastpos = iter->arg->lastpos; |
| 2328 | break; |
| 2329 | } |
| 2330 | |
| 2331 | case NFL_POST_CATENATION: |
| 2332 | { |
| 2333 | int num_tags, *tags, assertions; |
| 2334 | reg_errcode_t status; |
| 2335 | tre_catenation_t *cat = node->obj; |
| 2336 | node->nullable = cat->left->nullable && cat->right->nullable; |
| 2337 | |
| 2338 | /* Compute firstpos. */ |
| 2339 | if (cat->left->nullable) |
| 2340 | { |
| 2341 | /* The left side matches the empty string. Make a first pass |
| 2342 | with tre_match_empty() to get the number of tags and |
| 2343 | parameters. */ |
| 2344 | status = tre_match_empty(stack, cat->left, |
| 2345 | NULL((void*)0), NULL((void*)0), &num_tags); |
| 2346 | if (status != REG_OK0) |
| 2347 | return status; |
| 2348 | /* Allocate arrays for the tags and parameters. */ |
| 2349 | tags = xmallocmalloc(sizeof(*tags) * (num_tags + 1)); |
| 2350 | if (!tags) |
| 2351 | return REG_ESPACE12; |
| 2352 | tags[0] = -1; |
| 2353 | assertions = 0; |
| 2354 | /* Second pass with tre_mach_empty() to get the list of |
| 2355 | tags and parameters. */ |
| 2356 | status = tre_match_empty(stack, cat->left, tags, |
| 2357 | &assertions, NULL((void*)0)); |
| 2358 | if (status != REG_OK0) |
| 2359 | { |
| 2360 | xfreefree(tags); |
| 2361 | return status; |
| 2362 | } |
| 2363 | node->firstpos = |
| 2364 | tre_set_union(mem, cat->right->firstpos, cat->left->firstpos, |
| 2365 | tags, assertions); |
| 2366 | xfreefree(tags); |
| 2367 | if (!node->firstpos) |
| 2368 | return REG_ESPACE12; |
| 2369 | } |
| 2370 | else |
| 2371 | { |
| 2372 | node->firstpos = cat->left->firstpos; |
| 2373 | } |
| 2374 | |
| 2375 | /* Compute lastpos. */ |
| 2376 | if (cat->right->nullable) |
| 2377 | { |
| 2378 | /* The right side matches the empty string. Make a first pass |
| 2379 | with tre_match_empty() to get the number of tags and |
| 2380 | parameters. */ |
| 2381 | status = tre_match_empty(stack, cat->right, |
| 2382 | NULL((void*)0), NULL((void*)0), &num_tags); |
| 2383 | if (status != REG_OK0) |
| 2384 | return status; |
| 2385 | /* Allocate arrays for the tags and parameters. */ |
| 2386 | tags = xmallocmalloc(sizeof(int) * (num_tags + 1)); |
| 2387 | if (!tags) |
| 2388 | return REG_ESPACE12; |
| 2389 | tags[0] = -1; |
| 2390 | assertions = 0; |
| 2391 | /* Second pass with tre_mach_empty() to get the list of |
| 2392 | tags and parameters. */ |
| 2393 | status = tre_match_empty(stack, cat->right, tags, |
| 2394 | &assertions, NULL((void*)0)); |
| 2395 | if (status != REG_OK0) |
| 2396 | { |
| 2397 | xfreefree(tags); |
| 2398 | return status; |
| 2399 | } |
| 2400 | node->lastpos = |
| 2401 | tre_set_union(mem, cat->left->lastpos, cat->right->lastpos, |
| 2402 | tags, assertions); |
| 2403 | xfreefree(tags); |
| 2404 | if (!node->lastpos) |
| 2405 | return REG_ESPACE12; |
| 2406 | } |
| 2407 | else |
| 2408 | { |
| 2409 | node->lastpos = cat->right->lastpos; |
| 2410 | } |
| 2411 | break; |
| 2412 | } |
| 2413 | |
| 2414 | default: |
| 2415 | assert(0)(void)0; |
| 2416 | break; |
| 2417 | } |
| 2418 | } |
| 2419 | |
| 2420 | return REG_OK0; |
| 2421 | } |
| 2422 | |
| 2423 | |
| 2424 | /* Adds a transition from each position in `p1' to each position in `p2'. */ |
| 2425 | static reg_errcode_t |
| 2426 | tre_make_trans(tre_pos_and_tags_t *p1, tre_pos_and_tags_t *p2, |
| 2427 | tre_tnfa_transition_t *transitions, |
| 2428 | int *counts, int *offs) |
| 2429 | { |
| 2430 | tre_pos_and_tags_t *orig_p2 = p2; |
| 2431 | tre_tnfa_transition_t *trans; |
| 2432 | int i, j, k, l, dup, prev_p2_pos; |
| 2433 | |
| 2434 | if (transitions != NULL((void*)0)) |
| 2435 | while (p1->position >= 0) |
| 2436 | { |
| 2437 | p2 = orig_p2; |
| 2438 | prev_p2_pos = -1; |
| 2439 | while (p2->position >= 0) |
| 2440 | { |
| 2441 | /* Optimization: if this position was already handled, skip it. */ |
| 2442 | if (p2->position == prev_p2_pos) |
| 2443 | { |
| 2444 | p2++; |
| 2445 | continue; |
| 2446 | } |
| 2447 | prev_p2_pos = p2->position; |
| 2448 | /* Set `trans' to point to the next unused transition from |
| 2449 | position `p1->position'. */ |
| 2450 | trans = transitions + offs[p1->position]; |
| 2451 | while (trans->state != NULL((void*)0)) |
| 2452 | { |
| 2453 | #if 0 |
| 2454 | /* If we find a previous transition from `p1->position' to |
| 2455 | `p2->position', it is overwritten. This can happen only |
| 2456 | if there are nested loops in the regexp, like in "((a)*)*". |
| 2457 | In POSIX.2 repetition using the outer loop is always |
| 2458 | preferred over using the inner loop. Therefore the |
| 2459 | transition for the inner loop is useless and can be thrown |
| 2460 | away. */ |
| 2461 | /* XXX - The same position is used for all nodes in a bracket |
| 2462 | expression, so this optimization cannot be used (it will |
| 2463 | break bracket expressions) unless I figure out a way to |
| 2464 | detect it here. */ |
| 2465 | if (trans->state_id == p2->position) |
| 2466 | { |
| 2467 | break; |
| 2468 | } |
| 2469 | #endif |
| 2470 | trans++; |
| 2471 | } |
| 2472 | |
| 2473 | if (trans->state == NULL((void*)0)) |
| 2474 | (trans + 1)->state = NULL((void*)0); |
| 2475 | /* Use the character ranges, assertions, etc. from `p1' for |
| 2476 | the transition from `p1' to `p2'. */ |
| 2477 | trans->code_min = p1->code_min; |
| 2478 | trans->code_max = p1->code_max; |
| 2479 | trans->state = transitions + offs[p2->position]; |
| 2480 | trans->state_id = p2->position; |
| 2481 | trans->assertions = p1->assertions | p2->assertions |
| 2482 | | (p1->class ? ASSERT_CHAR_CLASS4 : 0) |
| 2483 | | (p1->neg_classes != NULL((void*)0) ? ASSERT_CHAR_CLASS_NEG8 : 0); |
| 2484 | if (p1->backref >= 0) |
| 2485 | { |
| 2486 | assert((trans->assertions & ASSERT_CHAR_CLASS) == 0)(void)0; |
| 2487 | assert(p2->backref < 0)(void)0; |
| 2488 | trans->u.backref = p1->backref; |
| 2489 | trans->assertions |= ASSERT_BACKREF256; |
| 2490 | } |
| 2491 | else |
| 2492 | trans->u.class = p1->class; |
| 2493 | if (p1->neg_classes != NULL((void*)0)) |
| 2494 | { |
| 2495 | for (i = 0; p1->neg_classes[i] != (tre_ctype_t)0; i++); |
| 2496 | trans->neg_classes = |
| 2497 | xmallocmalloc(sizeof(*trans->neg_classes) * (i + 1)); |
| 2498 | if (trans->neg_classes == NULL((void*)0)) |
| 2499 | return REG_ESPACE12; |
| 2500 | for (i = 0; p1->neg_classes[i] != (tre_ctype_t)0; i++) |
| 2501 | trans->neg_classes[i] = p1->neg_classes[i]; |
| 2502 | trans->neg_classes[i] = (tre_ctype_t)0; |
| 2503 | } |
| 2504 | else |
| 2505 | trans->neg_classes = NULL((void*)0); |
| 2506 | |
| 2507 | /* Find out how many tags this transition has. */ |
| 2508 | i = 0; |
| 2509 | if (p1->tags != NULL((void*)0)) |
| 2510 | while(p1->tags[i] >= 0) |
| 2511 | i++; |
| 2512 | j = 0; |
| 2513 | if (p2->tags != NULL((void*)0)) |
| 2514 | while(p2->tags[j] >= 0) |
| 2515 | j++; |
| 2516 | |
| 2517 | /* If we are overwriting a transition, free the old tag array. */ |
| 2518 | if (trans->tags != NULL((void*)0)) |
| 2519 | xfreefree(trans->tags); |
| 2520 | trans->tags = NULL((void*)0); |
| 2521 | |
| 2522 | /* If there were any tags, allocate an array and fill it. */ |
| 2523 | if (i + j > 0) |
| 2524 | { |
| 2525 | trans->tags = xmallocmalloc(sizeof(*trans->tags) * (i + j + 1)); |
| 2526 | if (!trans->tags) |
| 2527 | return REG_ESPACE12; |
| 2528 | i = 0; |
| 2529 | if (p1->tags != NULL((void*)0)) |
| 2530 | while(p1->tags[i] >= 0) |
| 2531 | { |
| 2532 | trans->tags[i] = p1->tags[i]; |
| 2533 | i++; |
| 2534 | } |
| 2535 | l = i; |
| 2536 | j = 0; |
| 2537 | if (p2->tags != NULL((void*)0)) |
| 2538 | while (p2->tags[j] >= 0) |
| 2539 | { |
| 2540 | /* Don't add duplicates. */ |
| 2541 | dup = 0; |
| 2542 | for (k = 0; k < i; k++) |
| 2543 | if (trans->tags[k] == p2->tags[j]) |
| 2544 | { |
| 2545 | dup = 1; |
| 2546 | break; |
| 2547 | } |
| 2548 | if (!dup) |
| 2549 | trans->tags[l++] = p2->tags[j]; |
| 2550 | j++; |
| 2551 | } |
| 2552 | trans->tags[l] = -1; |
| 2553 | } |
| 2554 | |
| 2555 | p2++; |
| 2556 | } |
| 2557 | p1++; |
| 2558 | } |
| 2559 | else |
| 2560 | /* Compute a maximum limit for the number of transitions leaving |
| 2561 | from each state. */ |
| 2562 | while (p1->position >= 0) |
| 2563 | { |
| 2564 | p2 = orig_p2; |
| 2565 | while (p2->position >= 0) |
| 2566 | { |
| 2567 | counts[p1->position]++; |
| 2568 | p2++; |
| 2569 | } |
| 2570 | p1++; |
| 2571 | } |
| 2572 | return REG_OK0; |
| 2573 | } |
| 2574 | |
| 2575 | /* Converts the syntax tree to a TNFA. All the transitions in the TNFA are |
| 2576 | labelled with one character range (there are no transitions on empty |
| 2577 | strings). The TNFA takes O(n^2) space in the worst case, `n' is size of |
| 2578 | the regexp. */ |
| 2579 | static reg_errcode_t |
| 2580 | tre_ast_to_tnfa(tre_ast_node_t *node, tre_tnfa_transition_t *transitions, |
| 2581 | int *counts, int *offs) |
| 2582 | { |
| 2583 | tre_union_t *uni; |
| 2584 | tre_catenation_t *cat; |
| 2585 | tre_iteration_t *iter; |
| 2586 | reg_errcode_t errcode = REG_OK0; |
| 2587 | |
| 2588 | /* XXX - recurse using a stack!. */ |
| 2589 | switch (node->type) |
| 2590 | { |
| 2591 | case LITERAL: |
| 2592 | break; |
| 2593 | case UNION: |
| 2594 | uni = (tre_union_t *)node->obj; |
| 2595 | errcode = tre_ast_to_tnfa(uni->left, transitions, counts, offs); |
| 2596 | if (errcode != REG_OK0) |
| 2597 | return errcode; |
| 2598 | errcode = tre_ast_to_tnfa(uni->right, transitions, counts, offs); |
| 2599 | break; |
| 2600 | |
| 2601 | case CATENATION: |
| 2602 | cat = (tre_catenation_t *)node->obj; |
| 2603 | /* Add a transition from each position in cat->left->lastpos |
| 2604 | to each position in cat->right->firstpos. */ |
| 2605 | errcode = tre_make_trans(cat->left->lastpos, cat->right->firstpos, |
| 2606 | transitions, counts, offs); |
| 2607 | if (errcode != REG_OK0) |
| 2608 | return errcode; |
| 2609 | errcode = tre_ast_to_tnfa(cat->left, transitions, counts, offs); |
| 2610 | if (errcode != REG_OK0) |
| 2611 | return errcode; |
| 2612 | errcode = tre_ast_to_tnfa(cat->right, transitions, counts, offs); |
| 2613 | break; |
| 2614 | |
| 2615 | case ITERATION: |
| 2616 | iter = (tre_iteration_t *)node->obj; |
| 2617 | assert(iter->max == -1 || iter->max == 1)(void)0; |
| 2618 | |
| 2619 | if (iter->max == -1) |
| 2620 | { |
| 2621 | assert(iter->min == 0 || iter->min == 1)(void)0; |
| 2622 | /* Add a transition from each last position in the iterated |
| 2623 | expression to each first position. */ |
| 2624 | errcode = tre_make_trans(iter->arg->lastpos, iter->arg->firstpos, |
| 2625 | transitions, counts, offs); |
| 2626 | if (errcode != REG_OK0) |
| 2627 | return errcode; |
| 2628 | } |
| 2629 | errcode = tre_ast_to_tnfa(iter->arg, transitions, counts, offs); |
| 2630 | break; |
| 2631 | } |
| 2632 | return errcode; |
| 2633 | } |
| 2634 | |
| 2635 | |
| 2636 | #define ERROR_EXIT(err)do { errcode = err; if ( 1) goto error_exit; } while ( 0) \ |
| 2637 | do \ |
| 2638 | { \ |
| 2639 | errcode = err; \ |
| 2640 | if (/*CONSTCOND*/1) \ |
| 2641 | goto error_exit; \ |
| 2642 | } \ |
| 2643 | while (/*CONSTCOND*/0) |
| 2644 | |
| 2645 | |
| 2646 | int |
| 2647 | regcomp(regex_t *restrict preg, const char *restrict regex, int cflags) |
| 2648 | { |
| 2649 | tre_stack_t *stack; |
| 2650 | tre_ast_node_t *tree, *tmp_ast_l, *tmp_ast_r; |
| 2651 | tre_pos_and_tags_t *p; |
| 2652 | int *counts = NULL((void*)0), *offs = NULL((void*)0); |
| 2653 | int i, add = 0; |
| 2654 | tre_tnfa_transition_t *transitions, *initial; |
| 2655 | tre_tnfa_t *tnfa = NULL((void*)0); |
| 2656 | tre_submatch_data_t *submatch_data; |
| 2657 | tre_tag_direction_t *tag_directions = NULL((void*)0); |
| 2658 | reg_errcode_t errcode; |
| 2659 | tre_mem_t mem; |
| 2660 | |
| 2661 | /* Parse context. */ |
| 2662 | tre_parse_ctx_t parse_ctx; |
| 2663 | |
| 2664 | /* Allocate a stack used throughout the compilation process for various |
| 2665 | purposes. */ |
| 2666 | stack = tre_stack_new(512, 10240, 128); |
| 2667 | if (!stack) |
| 2668 | return REG_ESPACE12; |
| 2669 | /* Allocate a fast memory allocator. */ |
| 2670 | mem = tre_mem_new()__tre_mem_new_impl(0, ((void*)0)); |
| 2671 | if (!mem) |
| 2672 | { |
| 2673 | tre_stack_destroy(stack); |
| 2674 | return REG_ESPACE12; |
| 2675 | } |
| 2676 | |
| 2677 | /* Parse the regexp. */ |
| 2678 | memset(&parse_ctx, 0, sizeof(parse_ctx)); |
| 2679 | parse_ctx.mem = mem; |
| 2680 | parse_ctx.stack = stack; |
| 2681 | parse_ctx.re = regex; |
| 2682 | parse_ctx.cflags = cflags; |
| 2683 | parse_ctx.max_backref = -1; |
| 2684 | errcode = tre_parse(&parse_ctx); |
| 2685 | if (errcode != REG_OK0) |
| 2686 | ERROR_EXIT(errcode)do { errcode = errcode; if ( 1) goto error_exit; } while ( 0); |
| 2687 | preg->re_nsub = parse_ctx.submatch_id - 1; |
| 2688 | tree = parse_ctx.n; |
| 2689 | |
| 2690 | #ifdef TRE_DEBUG |
| 2691 | tre_ast_print(tree); |
| 2692 | #endif /* TRE_DEBUG */ |
| 2693 | |
| 2694 | /* Referring to nonexistent subexpressions is illegal. */ |
| 2695 | if (parse_ctx.max_backref > (int)preg->re_nsub) |
| 2696 | ERROR_EXIT(REG_ESUBREG)do { errcode = 6; if ( 1) goto error_exit; } while ( 0); |
| 2697 | |
| 2698 | /* Allocate the TNFA struct. */ |
| 2699 | tnfa = xcalloccalloc(1, sizeof(tre_tnfa_t)); |
| 2700 | if (tnfa == NULL((void*)0)) |
| 2701 | ERROR_EXIT(REG_ESPACE)do { errcode = 12; if ( 1) goto error_exit; } while ( 0); |
| 2702 | tnfa->have_backrefs = parse_ctx.max_backref >= 0; |
| 2703 | tnfa->have_approx = 0; |
| 2704 | tnfa->num_submatches = parse_ctx.submatch_id; |
| 2705 | |
| 2706 | /* Set up tags for submatch addressing. If REG_NOSUB is set and the |
| 2707 | regexp does not have back references, this can be skipped. */ |
| 2708 | if (tnfa->have_backrefs || !(cflags & REG_NOSUB8)) |
| 2709 | { |
| 2710 | |
| 2711 | /* Figure out how many tags we will need. */ |
| 2712 | errcode = tre_add_tags(NULL((void*)0), stack, tree, tnfa); |
| 2713 | if (errcode != REG_OK0) |
| 2714 | ERROR_EXIT(errcode)do { errcode = errcode; if ( 1) goto error_exit; } while ( 0); |
| 2715 | |
| 2716 | if (tnfa->num_tags > 0) |
| 2717 | { |
| 2718 | tag_directions = xmallocmalloc(sizeof(*tag_directions) |
| 2719 | * (tnfa->num_tags + 1)); |
| 2720 | if (tag_directions == NULL((void*)0)) |
| 2721 | ERROR_EXIT(REG_ESPACE)do { errcode = 12; if ( 1) goto error_exit; } while ( 0); |
| 2722 | tnfa->tag_directions = tag_directions; |
| 2723 | memset(tag_directions, -1, |
| 2724 | sizeof(*tag_directions) * (tnfa->num_tags + 1)); |
| 2725 | } |
| 2726 | tnfa->minimal_tags = xcalloccalloc((unsigned)tnfa->num_tags * 2 + 1, |
| 2727 | sizeof(*tnfa->minimal_tags)); |
| 2728 | if (tnfa->minimal_tags == NULL((void*)0)) |
| 2729 | ERROR_EXIT(REG_ESPACE)do { errcode = 12; if ( 1) goto error_exit; } while ( 0); |
| 2730 | |
| 2731 | submatch_data = xcalloccalloc((unsigned)parse_ctx.submatch_id, |
| 2732 | sizeof(*submatch_data)); |
| 2733 | if (submatch_data == NULL((void*)0)) |
| 2734 | ERROR_EXIT(REG_ESPACE)do { errcode = 12; if ( 1) goto error_exit; } while ( 0); |
| 2735 | tnfa->submatch_data = submatch_data; |
| 2736 | |
| 2737 | errcode = tre_add_tags(mem, stack, tree, tnfa); |
| 2738 | if (errcode != REG_OK0) |
| 2739 | ERROR_EXIT(errcode)do { errcode = errcode; if ( 1) goto error_exit; } while ( 0); |
| 2740 | |
| 2741 | } |
| 2742 | |
| 2743 | /* Expand iteration nodes. */ |
| 2744 | errcode = tre_expand_ast(mem, stack, tree, &parse_ctx.position, |
| 2745 | tag_directions); |
| 2746 | if (errcode != REG_OK0) |
| 2747 | ERROR_EXIT(errcode)do { errcode = errcode; if ( 1) goto error_exit; } while ( 0); |
| 2748 | |
| 2749 | /* Add a dummy node for the final state. |
| 2750 | XXX - For certain patterns this dummy node can be optimized away, |
| 2751 | for example "a*" or "ab*". Figure out a simple way to detect |
| 2752 | this possibility. */ |
| 2753 | tmp_ast_l = tree; |
| 2754 | tmp_ast_r = tre_ast_new_literal(mem, 0, 0, parse_ctx.position++); |
| 2755 | if (tmp_ast_r == NULL((void*)0)) |
| 2756 | ERROR_EXIT(REG_ESPACE)do { errcode = 12; if ( 1) goto error_exit; } while ( 0); |
| 2757 | |
| 2758 | tree = tre_ast_new_catenation(mem, tmp_ast_l, tmp_ast_r); |
| 2759 | if (tree == NULL((void*)0)) |
| 2760 | ERROR_EXIT(REG_ESPACE)do { errcode = 12; if ( 1) goto error_exit; } while ( 0); |
| 2761 | |
| 2762 | errcode = tre_compute_nfl(mem, stack, tree); |
| 2763 | if (errcode != REG_OK0) |
| 2764 | ERROR_EXIT(errcode)do { errcode = errcode; if ( 1) goto error_exit; } while ( 0); |
| 2765 | |
| 2766 | counts = xmallocmalloc(sizeof(int) * parse_ctx.position); |
| 2767 | if (counts == NULL((void*)0)) |
| 2768 | ERROR_EXIT(REG_ESPACE)do { errcode = 12; if ( 1) goto error_exit; } while ( 0); |
| 2769 | |
| 2770 | offs = xmallocmalloc(sizeof(int) * parse_ctx.position); |
| 2771 | if (offs == NULL((void*)0)) |
| 2772 | ERROR_EXIT(REG_ESPACE)do { errcode = 12; if ( 1) goto error_exit; } while ( 0); |
| 2773 | |
| 2774 | for (i = 0; i < parse_ctx.position; i++) |
| 2775 | counts[i] = 0; |
| 2776 | tre_ast_to_tnfa(tree, NULL((void*)0), counts, NULL((void*)0)); |
| 2777 | |
| 2778 | add = 0; |
| 2779 | for (i = 0; i < parse_ctx.position; i++) |
| 2780 | { |
| 2781 | offs[i] = add; |
| 2782 | add += counts[i] + 1; |
| 2783 | counts[i] = 0; |
| 2784 | } |
| 2785 | transitions = xcalloccalloc((unsigned)add + 1, sizeof(*transitions)); |
| 2786 | if (transitions == NULL((void*)0)) |
| 2787 | ERROR_EXIT(REG_ESPACE)do { errcode = 12; if ( 1) goto error_exit; } while ( 0); |
| 2788 | tnfa->transitions = transitions; |
| 2789 | tnfa->num_transitions = add; |
| 2790 | |
| 2791 | errcode = tre_ast_to_tnfa(tree, transitions, counts, offs); |
| 2792 | if (errcode != REG_OK0) |
| 2793 | ERROR_EXIT(errcode)do { errcode = errcode; if ( 1) goto error_exit; } while ( 0); |
| 2794 | |
| 2795 | tnfa->firstpos_chars = NULL((void*)0); |
| 2796 | |
| 2797 | p = tree->firstpos; |
| 2798 | i = 0; |
| 2799 | while (p->position >= 0) |
| 2800 | { |
| 2801 | i++; |
| 2802 | p++; |
| 2803 | } |
| 2804 | |
| 2805 | initial = xcalloccalloc((unsigned)i + 1, sizeof(tre_tnfa_transition_t)); |
| 2806 | if (initial == NULL((void*)0)) |
| 2807 | ERROR_EXIT(REG_ESPACE)do { errcode = 12; if ( 1) goto error_exit; } while ( 0); |
| 2808 | tnfa->initial = initial; |
| 2809 | |
| 2810 | i = 0; |
| 2811 | for (p = tree->firstpos; p->position >= 0; p++) |
| 2812 | { |
| 2813 | initial[i].state = transitions + offs[p->position]; |
| 2814 | initial[i].state_id = p->position; |
| 2815 | initial[i].tags = NULL((void*)0); |
| 2816 | /* Copy the arrays p->tags, and p->params, they are allocated |
| 2817 | from a tre_mem object. */ |
| 2818 | if (p->tags) |
| 2819 | { |
| 2820 | int j; |
| 2821 | for (j = 0; p->tags[j] >= 0; j++); |
| 2822 | initial[i].tags = xmallocmalloc(sizeof(*p->tags) * (j + 1)); |
| 2823 | if (!initial[i].tags) |
| 2824 | ERROR_EXIT(REG_ESPACE)do { errcode = 12; if ( 1) goto error_exit; } while ( 0); |
| 2825 | memcpy(initial[i].tags, p->tags, sizeof(*p->tags) * (j + 1)); |
| 2826 | } |
| 2827 | initial[i].assertions = p->assertions; |
| 2828 | i++; |
| 2829 | } |
| 2830 | initial[i].state = NULL((void*)0); |
| 2831 | |
| 2832 | tnfa->num_transitions = add; |
| 2833 | tnfa->final = transitions + offs[tree->lastpos[0].position]; |
| 2834 | tnfa->num_states = parse_ctx.position; |
| 2835 | tnfa->cflags = cflags; |
| 2836 | |
| 2837 | tre_mem_destroy__tre_mem_destroy(mem); |
| 2838 | tre_stack_destroy(stack); |
| 2839 | xfreefree(counts); |
| 2840 | xfreefree(offs); |
| 2841 | |
| 2842 | preg->TRE_REGEX_T_FIELD__opaque = (void *)tnfa; |
| 2843 | return REG_OK0; |
| 2844 | |
| 2845 | error_exit: |
| 2846 | /* Free everything that was allocated and return the error code. */ |
| 2847 | tre_mem_destroy__tre_mem_destroy(mem); |
| 2848 | if (stack != NULL((void*)0)) |
| 2849 | tre_stack_destroy(stack); |
| 2850 | if (counts != NULL((void*)0)) |
| 2851 | xfreefree(counts); |
| 2852 | if (offs != NULL((void*)0)) |
| 2853 | xfreefree(offs); |
| 2854 | preg->TRE_REGEX_T_FIELD__opaque = (void *)tnfa; |
| 2855 | regfree(preg); |
| 2856 | return errcode; |
| 2857 | } |
| 2858 | |
| 2859 | |
| 2860 | |
| 2861 | |
| 2862 | void |
| 2863 | regfree(regex_t *preg) |
| 2864 | { |
| 2865 | tre_tnfa_t *tnfa; |
| 2866 | unsigned int i; |
| 2867 | tre_tnfa_transition_t *trans; |
| 2868 | |
| 2869 | tnfa = (void *)preg->TRE_REGEX_T_FIELD__opaque; |
| 2870 | if (!tnfa) |
| 2871 | return; |
| 2872 | |
| 2873 | for (i = 0; i < tnfa->num_transitions; i++) |
| 2874 | if (tnfa->transitions[i].state) |
| 2875 | { |
| 2876 | if (tnfa->transitions[i].tags) |
| 2877 | xfreefree(tnfa->transitions[i].tags); |
| 2878 | if (tnfa->transitions[i].neg_classes) |
| 2879 | xfreefree(tnfa->transitions[i].neg_classes); |
| 2880 | } |
| 2881 | if (tnfa->transitions) |
| 2882 | xfreefree(tnfa->transitions); |
| 2883 | |
| 2884 | if (tnfa->initial) |
| 2885 | { |
| 2886 | for (trans = tnfa->initial; trans->state; trans++) |
| 2887 | { |
| 2888 | if (trans->tags) |
| 2889 | xfreefree(trans->tags); |
| 2890 | } |
| 2891 | xfreefree(tnfa->initial); |
| 2892 | } |
| 2893 | |
| 2894 | if (tnfa->submatch_data) |
| 2895 | { |
| 2896 | for (i = 0; i < tnfa->num_submatches; i++) |
| 2897 | if (tnfa->submatch_data[i].parents) |
| 2898 | xfreefree(tnfa->submatch_data[i].parents); |
| 2899 | xfreefree(tnfa->submatch_data); |
| 2900 | } |
| 2901 | |
| 2902 | if (tnfa->tag_directions) |
| 2903 | xfreefree(tnfa->tag_directions); |
| 2904 | if (tnfa->firstpos_chars) |
| 2905 | xfreefree(tnfa->firstpos_chars); |
| 2906 | if (tnfa->minimal_tags) |
| 2907 | xfreefree(tnfa->minimal_tags); |
| 2908 | xfreefree(tnfa); |
| 2909 | } |